FinMatrix.Matrix.MatrixOrth


Require Import Hierarchy.
Require Import Matrix.
Require Import MatrixInvAM.

Generalizable Variable A Aadd Aopp Amul Ainv Alt Ale Altb Aleb a2r.

Orthogonal Matrix

More theory of matrix inversion, dependent on core theory `Minv`
Module MatrixOrth (F : FieldElementType).
  Open Scope nat_scope.
  Open Scope A_scope.
  Open Scope mat_scope.

  Module AM := MinvAM F.
  Import AM.

  Local Notation "0" := Azero : A_scope.
  Local Notation "1" := Aone : A_scope.
  Local Notation "- a" := (Aopp a) : A_scope.

  Local Notation vec n := (@vec A n).
  Local Notation vzero := (@vzero _ 0).
  Local Notation vdot := (@vdot _ Aadd 0 Amul).
  Local Notation "< u , v >" := (vdot u v) : vec_scope.
  Local Notation vunit := (@vunit _ Aadd 0 Amul 1).
  Local Notation vorth := (@vorth _ Aadd 0 Amul).
  Local Infix "_|_" := vorth : vec_scope.

  Local Notation mat r c := (mat A r c).
  Local Notation smat n := (smat A n).
  Local Notation "M \T" := (@mtrans A _ _ M) : mat_scope.
  Local Notation mat1 := (@mat1 _ Azero Aone).
  Local Notation mmul := (@mmul _ Aadd Azero Amul).
  Local Infix "*" := mmul : mat_scope.
  Local Notation mmulv := (@mmulv _ Aadd 0 Amul).
  Local Infix "*v" := mmulv : mat_scope.
  Local Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
  Local Notation mdet := (@mdet _ Aadd 0 Aopp Amul 1).

Orthonormal vectors 标准正交的向量组

All (different) columns of a matrix are orthogonal each other. For example: v1;v2;v3 => u|_v2 && u|_v3 && v|_v3.
    Definition mcolsOrth {r c} (M : mat r c) : Prop :=
      forall j1 j2, j1 <> j2 -> mcol M j1 _|_ mcol M j2.

All (different) rows of a matrix are orthogonal each other.
    Definition mrowsOrth {r c} (M : mat r c) : Prop :=
      forall i1 i2, i1 <> i2 -> M.[i1] _|_ M.[i2].

    Lemma mtrans_mcolsOrth : forall {r c} (M : mat r c), mrowsOrth M -> mcolsOrth (M\T).
    Proof. intros. hnf in *. intros. rewrite !mcol_mtrans_eq_mrow. auto. Qed.

    Lemma mtrans_mrowsOrth : forall {r c} (M : mat r c), mcolsOrth M -> mrowsOrth (M\T).
    Proof. intros. hnf in *. intros. rewrite !mrow_mtrans_eq_mcol. auto. Qed.


All columns of a matrix are unit vector. For example: v1;v2;v3 => unit u && unit v && unit v3
    Definition mcolsUnit {r c} (M : mat r c) : Prop := forall j, vunit (mcol M j).

All rows of a matrix are unit vector.
    Definition mrowsUnit {r c} (M : mat r c) : Prop := forall i, vunit (M.[i]).

    Lemma mtrans_mcolsUnit : forall {r c} (M : mat r c),
        mrowsUnit M -> mcolsUnit (M\T).
    Proof. intros. hnf in *. intros. rewrite mcol_mtrans_eq_mrow. auto. Qed.

    Lemma mtrans_mrowsUnit : forall {r c} (M : mat r c),
        mcolsUnit M -> mrowsUnit (M\T).
    Proof. intros. hnf in *. intros. rewrite mrow_mtrans_eq_mcol. auto. Qed.


The columns of a matrix is orthogomal
    Definition mcolsOrthonormal {r c} (M : mat r c) : Prop :=
      mcolsOrth M /\ mcolsUnit M.

The rows of a matrix is orthogomal
    Definition mrowsOrthonormal {r c} (M : mat r c) : Prop :=
      mrowsOrth M /\ mrowsUnit M.

mrowsOrthonormal M -> mcolsOrthonormal (M\T)
    Lemma mtrans_mcolsOrthonormal : forall {r c} (M : mat r c),
        mrowsOrthonormal M -> mcolsOrthonormal (M\T).
    Proof.
      intros. hnf in *. destruct H. split.
      apply mtrans_mcolsOrth; auto.
      apply mtrans_mcolsUnit; auto.
    Qed.

mcolsOrthonormal M -> mrowsOrthonormal (M\T)
    Lemma mtrans_mrowsOrthonormal : forall {r c} (M : mat r c),
        mcolsOrthonormal M -> mrowsOrthonormal (M\T).
    Proof.
      intros. hnf in *. destruct H. split.
      apply mtrans_mrowsOrth; auto.
      apply mtrans_mrowsUnit; auto.
    Qed.

  End mcolsOrthonormal_mrowsOrthonormal.

Orthogonal matrix

  Section morth.

An orthogonal matrix
    Definition morth {n} (M : smat n) : Prop := M\T * M = mat1.

orthogonal M -> invertible M
    Lemma morth_minvtble : forall {n} (M : smat n), morth M -> minvtble M.
    Proof.
      intros. rewrite minvtble_iff_minvtbleL.
      hnf in *. exists (M\T). auto.
    Qed.

orthogonal M -> M\-1 = M\T
    Lemma morth_imply_minv_eq_trans : forall {n} (M : smat n),
        morth M -> minv M = M\T.
    Proof. intros. hnf in H. apply mmul_eq1_imply_minv_r; auto. Qed.

M\-1 = M\T -> orthogonal M
    Lemma minv_eq_trans_imply_morth : forall {n} (M : smat n),
        minvtble M -> minv M = M\T -> morth M.
    Proof. intros. hnf. rewrite <- H0. apply mmul_minv_l; auto. Qed.

orthogonal M <-> M\T * M = mat1
    Lemma morth_iff_mul_trans_l : forall {n} (M : smat n),
        morth M <-> M\T * M = mat1.
    Proof. intros. hnf. auto. Qed.

orthogonal M <-> M * M\T = mat1
    Lemma morth_iff_mul_trans_r : forall {n} (M : smat n),
        morth M <-> M * M\T = mat1.
    Proof.
      intros. hnf. split; intros H; auto.
      - pose proof (morth_minvtble M H).
        apply morth_imply_minv_eq_trans in H. rewrite <- H.
        apply mmul_minv_r; auto.
      - hnf. rewrite mmul_eq1_comm; auto.
    Qed.

orthogonal mat1
    Lemma morth_mat1 : forall {n}, @morth n mat1.
    Proof. intros. hnf. rewrite mtrans_mat1, mmul_1_r. easy. Qed.

orthogonal M -> orthogonal p -> orthogonal (m * p)
    Lemma morth_mul : forall {n} (M N : smat n),
        morth M -> morth N -> morth (M * N).
    Proof.
      intros. hnf. hnf in H, H0. rewrite mtrans_mmul.
      rewrite mmul_assoc. rewrite <- (mmul_assoc _ M).
      rewrite H. rewrite mmul_1_l. rewrite H0. easy.
    Qed.

orthogonal M -> orthogonal (M\T)
    Lemma morth_mtrans : forall {n} (M : smat n), morth M -> morth (M\T).
    Proof.
      intros. hnf. rewrite mtrans_mtrans.
      apply morth_iff_mul_trans_r in H. auto.
    Qed.

orthogonal (M\T) -> orthogonal M
    Lemma morth_mtrans_inv : forall {n} (M : smat n), morth (M\T) -> morth M.
    Proof. intros. apply morth_mtrans in H. rewrite mtrans_mtrans in H. auto. Qed.

orthogonal M -> orthogonal M\-1
    Lemma morth_minv : forall {n} (M : smat n), morth M -> morth (M\-1).
    Proof.
      intros. hnf.
      rewrite morth_imply_minv_eq_trans; auto. rewrite mtrans_mtrans.
      apply morth_iff_mul_trans_r; auto.
    Qed.

orthogonal M -> |M| = ± 1
    Lemma morth_mdet : forall {n} (M : smat n),
        morth M -> (mdet M = 1 \/ mdet M = (- (1))%A).
    Proof.
      intros. unfold morth in H.
      pose proof (mdet_mmul (M\T) M). rewrite H in H0.
      rewrite mdet_mtrans,mdet_mat1 in H0.
      symmetry in H0. apply ring_sqr_eq1_imply_1_neg1 in H0. auto.
    Qed.

matrix M is orthogonal <-> columns of M are orthogomal
    Lemma morth_iff_mcolsOrthonormal : forall {n} (M : smat n),
        morth M <-> mcolsOrthonormal M.
    Proof.
      intros. unfold mcolsOrthonormal, mcolsOrth, mcolsUnit, vorth, vunit.
      split; intros.
      - split; intros.
        + rewrite vdot_col_col; auto. rewrite H; auto. rewrite mnth_mat1_diff; auto.
        + rewrite vdot_col_col; auto. rewrite H; auto. rewrite mnth_mat1_same; auto.
      - destruct H as [H1 H2]. apply meq_iff_mnth; intros.
        rewrite <- vdot_col_col; auto.
        destruct (i ??= j) as [E|E].
        + fin2nat. rewrite mnth_mat1_same; auto.
        + fin2nat. rewrite mnth_mat1_diff; auto.
    Qed.

matrix M is orthogonal <-> rows of M are orthogomal
    Lemma morth_iff_mrowsOrthonormal : forall {n} (M : smat n),
        morth M <-> mrowsOrthonormal M.
    Proof.
      intros. split; intros.
      - apply morth_mtrans in H. apply morth_iff_mcolsOrthonormal in H.
        apply mtrans_mrowsOrthonormal in H. rewrite mtrans_mtrans in H. auto.
      - apply mtrans_mcolsOrthonormal in H.
        apply morth_iff_mcolsOrthonormal in H. apply morth_mtrans_inv; auto.
    Qed.

columns of M are orthonormal <-> rows of M are orthonormal
    Lemma mcolsOrthonormal_iff_mrowsOrthonormal : forall {n} (M : smat n),
        mcolsOrthonormal M <-> mrowsOrthonormal M.
    Proof.
      intros. rewrite <- morth_iff_mrowsOrthonormal, <- morth_iff_mcolsOrthonormal.
      easy.
    Qed.

Transformation by orthogonal matrix will keep inner-product
    Theorem morth_keep_dot : forall {n} (M : smat n) (u v : vec n),
        morth M -> <M *v u, M *v v> = <u, v>.
    Proof.
      intros. rewrite vdot_eq_mmul. rewrite v2rv_mmulv. rewrite v2cv_mmulv.
      rewrite mmul_assoc. rewrite <- (mmul_assoc _ M).
      rewrite morth_iff_mul_trans_l in H. rewrite H. rewrite mmul_1_l. auto.
    Qed.

    Context `{HOrderedField : OrderedField A Aadd 0 Aopp Amul 1 Ainv}.
    Context `{HA2R : A2R A Aadd 0 Aopp Amul 1 Ainv Alt Ale a2r}.
    Notation vlen := (@vlen _ Aadd 0 Amul a2r).
    Notation "|| v ||" := (vlen v) : vec_scope.

Transformation by orthogonal matrix will keep length.
    Corollary morth_keep_length : forall {n} (M : smat n) (v : vec n),
        morth M -> ||M *v v|| = ||v||.
    Proof.
      intros. rewrite vlen_eq_iff_dot_eq. apply morth_keep_dot. auto.
    Qed.

Transformation by orthogonal matrix will keep zero.
    Lemma morth_keep_nonzero : forall {n} (M : smat n) (v : vec n),
        v <> vzero -> morth M -> M *v v <> vzero.
    Proof.
      intros. intro.
      pose proof (morth_keep_length M v H0). rewrite H1 in H2.
      rewrite vlen_vzero in H2. symmetry in H2.
      rewrite vlen_eq0_iff_eq0 in H2. easy.
    Qed.

由于正交矩阵可保持变换向量的长度和角度,它可保持坐标系的整体结构不变。 因此,正交矩阵仅可用于旋转变换和反射变换或二者的组合变换。 当正交矩阵的行列式为1,表示一个旋转,行列式为-1,表示一个反射。

  End morth.

O(n): General Orthogonal Group, General Linear Group

  Section GOn.

The set of GOn
    Record GOn {n: nat} := {
        GOn_mat :> smat n;
        GOn_orth : morth GOn_mat
      }.

    Arguments Build_GOn {n}.

The condition to form a GOn from a matrix
    Definition GOnP {n} (m : smat n) : Prop := morth m.

    Lemma GOnP_spec : forall {n} (x : @GOn n), GOnP x.
    Proof. intros. apply x. Qed.

Create a GOn from a matrix satisfing `GOnP`
    Definition mkGOn {n} (m : smat n) (H : GOnP m) : @GOn n.
      refine (Build_GOn m _). apply H.
    Defined.

Two GOn are equal, only need the matrix are equal
    Lemma GOn_eq_iff : forall {n} (x1 x2 : @GOn n), GOn_mat x1 = GOn_mat x2 -> x1 = x2.
    Proof.
      intros. destruct x1,x2; simpl in H.
      subst. f_equal. apply proof_irrelevance.
    Qed.

Multiplication of elements in GOn
    Definition GOn_mul {n} (x1 x2 : @GOn n) : @GOn n.
      refine (Build_GOn (x1 * x2) _).
      destruct x1 as [M1 Horth1], x2 as [M2 Horth2]. simpl.
      apply morth_mul; auto.
    Defined.

Identity element in GOn
    Definition GOn_1 {n} : @GOn n.
      refine (Build_GOn mat1 _).
      apply morth_mat1.
    Defined.

GOn_mul is associative
    Lemma GOn_mul_assoc : forall n, Associative (@GOn_mul n).
    Proof.
      intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_assoc.
    Qed.

GOn_1 is left-identity-element of GOn_mul operation
    Lemma GOn_mul_id_l : forall n, IdentityLeft (@GOn_mul n) GOn_1.
    Proof.
      intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_1_l.
    Qed.

GOn_1 is right-identity-element of GOn_mul operation
    Lemma GOn_mul_id_r : forall n, IdentityRight (@GOn_mul n) GOn_1.
    Proof.
      intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_1_r.
    Qed.

<GOn, +, 1> is a monoid
    Instance GOn_Monoid : forall n, Monoid (@GOn_mul n) GOn_1.
    Proof.
      intros. constructor; constructor; intros.
      apply GOn_mul_assoc.
      apply GOn_mul_id_l.
      apply GOn_mul_id_r.
      apply GOn_mul_assoc.
    Qed.

Inverse operation of multiplication in GOn
    Definition GOn_inv {n} (x : @GOn n) : @GOn n.
      refine (Build_GOn (x\T) _). destruct x as [M Horth]. simpl.
      apply morth_mtrans; auto.
    Defined.

GOn_inv is left-inversion of <GOn_mul,GOn_1>
    Lemma GOn_mul_inv_l : forall n, InverseLeft (@GOn_mul n) GOn_1 GOn_inv.
    Proof.
      intros. constructor; intros. apply GOn_eq_iff; simpl. apply a.
    Qed.

GOn_inv is right-inversion of <GOn_mul,GOn_1>
    Lemma GOn_mul_inv_r : forall n, InverseRight (@GOn_mul n) GOn_1 GOn_inv.
    Proof.
      intros. constructor; intros. apply GOn_eq_iff; simpl.
      apply morth_iff_mul_trans_r. apply a.
    Qed.

<GOn, +, 1, /s> is a group
    Theorem GOn_Group : forall n, Group (@GOn_mul n) GOn_1 GOn_inv.
    Proof.
      intros. constructor.
      apply GOn_Monoid.
      apply GOn_mul_inv_l.
      apply GOn_mul_inv_r.
    Qed.

Extract the properties of GOn to its carrier



M\-1 = M\T
    Lemma GOn_imply_minv_eq_trans : forall {n} (M : @GOn n), M\-1 = M\T.
    Proof.
      intros. destruct M as [M H]. simpl in *.
      rewrite morth_imply_minv_eq_trans; auto.
    Qed.

  End GOn.

SO(n): Special Orthogonal Group, Rotation Group

  Section SOn.

The set of SOn
    Record SOn {n: nat} := {
        SOn_GOn :> @GOn n;
        SOn_det1 : mdet SOn_GOn = 1
      }.

    Arguments Build_SOn {n}.

The condition to form a SOn from a matrix
    Definition SOnP {n} (m : smat n) : Prop := morth m /\ mdet m = 1.

    Lemma SOnP_spec : forall {n} (x : @SOn n), SOnP x.
    Proof. intros. hnf. destruct x. split; auto. apply SOn_GOn0. Qed.

The transpose also keep SOn
    Lemma SOnP_mtrans : forall {n} (M : smat n), SOnP M -> SOnP (M\T).
    Proof.
      intros. hnf in *. destruct H. split.
      apply morth_mtrans; auto. rewrite mdet_mtrans; auto.
    Qed.

Create a SOn from a matrix satisfing `SOnP`
    Definition mkSOn {n} (m : smat n) (H : SOnP m) : @SOn n.
      refine (Build_SOn (Build_GOn _ m _) _). apply H.
      Unshelve. apply H.
    Defined.

    Lemma SOn_eq_iff_try : forall {n} (x1 x2 : @SOn n),
        GOn_mat x1 = GOn_mat x2 -> x1 = x2.
    Proof.
      intros.
      destruct x1 as [[M1 Horth1] Hdet1], x2 as [[M2 Horth2] Hdet2]; simpl in *.
      subst. f_equal.       - intros. rewrite H1. f_equal.
    Abort.

Two SOn are equal, only need the GOn are equal
    Lemma SOn_eq_iff_step1 : forall {n} (x1 x2 : @SOn n),
        SOn_GOn x1 = SOn_GOn x2 -> x1 = x2.
    Proof.
      intros. destruct x1,x2. simpl in *. subst. f_equal. apply proof_irrelevance.
    Qed.

Two SOn are equal, only need the matrix are equal
    Lemma SOn_eq_iff : forall {n} (x1 x2 : @SOn n), GOn_mat x1 = GOn_mat x2 -> x1 = x2.
    Proof.
      intros. apply SOn_eq_iff_step1. simpl in *.
      destruct x1,x2. simpl in *. apply GOn_eq_iff. auto.
    Qed.

    Definition SOn_mul {n} (s1 s2 : @SOn n) : @SOn n.
      refine (Build_SOn (GOn_mul s1 s2) _).
      destruct s1 as [[M1 Horth1] Hdet1], s2 as [[M2 Horth2] Hdet2]. simpl in *.
      rewrite mdet_mmul. rewrite Hdet1,Hdet2. field.
    Defined.

    Definition SOn_1 {n} : @SOn n.
      refine (Build_SOn (GOn_1) _).
      apply mdet_mat1.
    Defined.

SOn_mul is associative
    Lemma SOn_mul_assoc : forall n, Associative (@SOn_mul n).
    Proof.
      intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_assoc.
    Qed.

SOn_1 is left-identity-element of SOn_mul operation
    Lemma SOn_mul_id_l : forall n, IdentityLeft SOn_mul (@SOn_1 n).
    Proof.
      intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_1_l.
    Qed.

SOn_1 is right-identity-element of SOn_mul operation
    Lemma SOn_mul_id_r : forall n, IdentityRight SOn_mul (@SOn_1 n).
    Proof.
      intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_1_r.
    Qed.

<SOn, +, 1> is a monoid
    Lemma SOn_Monoid : forall n, Monoid (@SOn_mul n) SOn_1.
    Proof.
      intros. constructor; constructor; intros.
      apply SOn_mul_assoc.
      apply SOn_mul_id_l.
      apply SOn_mul_id_r.
      apply SOn_mul_assoc.
    Qed.

    Definition SOn_inv {n} (x : @SOn n) : @SOn n.
      refine (Build_SOn (GOn_inv x) _).
      destruct x as [[M Horth] Hdet]; simpl.
      rewrite mdet_mtrans. auto.
    Defined.

SOn_inv is left-inversion of <SOn_mul,SOn_1>
    Lemma SOn_mul_inv_l : forall n, InverseLeft SOn_mul SOn_1 (@SOn_inv n).
    Proof.
      intros. constructor; intros. apply SOn_eq_iff; simpl.
      destruct a. apply SOn_GOn0.
    Qed.

SOn_inv is right-inversion of <SOn_mul,SOn_1>
    Lemma SOn_mul_inv_r : forall n, InverseRight SOn_mul SOn_1 (@SOn_inv n).
    Proof.
      intros. constructor; intros. apply SOn_eq_iff; simpl.
      apply morth_iff_mul_trans_r. destruct a. apply SOn_GOn0.
    Qed.

<SOn, +, 1, /s> is a group
    Theorem SOn_Group : forall n, Group (@SOn_mul n) SOn_1 SOn_inv.
    Proof.
      intros. constructor.
      apply SOn_Monoid.
      apply SOn_mul_inv_l.
      apply SOn_mul_inv_r.
    Qed.

Extract the properties of SOn to its carrier

M\-1 = M\T
    Lemma SOn_minv_eq_trans : forall {n} (M : @SOn n), M\-1 = M\T.
    Proof.
      intros. destruct M as [[M Horth] Hdet]; simpl.
      apply morth_imply_minv_eq_trans. auto.
    Qed.

M\T * M = mat1
    Lemma SOn_mul_trans_l_eq1 : forall {n} (M : @SOn n), M\T * M = mat1.
    Proof.
      intros. rewrite <- SOn_minv_eq_trans. apply mmul_minv_l.
      destruct M as [[M H] H1]. simpl in *.
      apply minvtble_iff_mdet_neq0. rewrite H1.
      apply field_1_neq_0; auto.
    Qed.

M * M\T = mat1
    Lemma SOn_mul_trans_r_eq1 : forall {n} (M : @SOn n), M * M\T = mat1.
    Proof.
      intros. pose proof (@SOn_mul_trans_l_eq1 n M).
      apply mmul_eq1_comm; auto.
    Qed.

  End SOn.
End MatrixOrth.