FinMatrix.Matrix.MatrixOrth
Require Import Hierarchy.
Require Import Matrix.
Require Import MatrixInvAM.
Generalizable Variable A Aadd Aopp Amul Ainv Alt Ale Altb Aleb a2r.
Module MatrixOrth (F : FieldElementType).
Open Scope nat_scope.
Open Scope A_scope.
Open Scope mat_scope.
Module AM := MinvAM F.
Import AM.
Local Notation "0" := Azero : A_scope.
Local Notation "1" := Aone : A_scope.
Local Notation "- a" := (Aopp a) : A_scope.
Local Notation vec n := (@vec A n).
Local Notation vzero := (@vzero _ 0).
Local Notation vdot := (@vdot _ Aadd 0 Amul).
Local Notation "< u , v >" := (vdot u v) : vec_scope.
Local Notation vunit := (@vunit _ Aadd 0 Amul 1).
Local Notation vorth := (@vorth _ Aadd 0 Amul).
Local Infix "_|_" := vorth : vec_scope.
Local Notation mat r c := (mat A r c).
Local Notation smat n := (smat A n).
Local Notation "M \T" := (@mtrans A _ _ M) : mat_scope.
Local Notation mat1 := (@mat1 _ Azero Aone).
Local Notation mmul := (@mmul _ Aadd Azero Amul).
Local Infix "*" := mmul : mat_scope.
Local Notation mmulv := (@mmulv _ Aadd 0 Amul).
Local Infix "*v" := mmulv : mat_scope.
Local Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
Local Notation mdet := (@mdet _ Aadd 0 Aopp Amul 1).
Open Scope nat_scope.
Open Scope A_scope.
Open Scope mat_scope.
Module AM := MinvAM F.
Import AM.
Local Notation "0" := Azero : A_scope.
Local Notation "1" := Aone : A_scope.
Local Notation "- a" := (Aopp a) : A_scope.
Local Notation vec n := (@vec A n).
Local Notation vzero := (@vzero _ 0).
Local Notation vdot := (@vdot _ Aadd 0 Amul).
Local Notation "< u , v >" := (vdot u v) : vec_scope.
Local Notation vunit := (@vunit _ Aadd 0 Amul 1).
Local Notation vorth := (@vorth _ Aadd 0 Amul).
Local Infix "_|_" := vorth : vec_scope.
Local Notation mat r c := (mat A r c).
Local Notation smat n := (smat A n).
Local Notation "M \T" := (@mtrans A _ _ M) : mat_scope.
Local Notation mat1 := (@mat1 _ Azero Aone).
Local Notation mmul := (@mmul _ Aadd Azero Amul).
Local Infix "*" := mmul : mat_scope.
Local Notation mmulv := (@mmulv _ Aadd 0 Amul).
Local Infix "*v" := mmulv : mat_scope.
Local Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
Local Notation mdet := (@mdet _ Aadd 0 Aopp Amul 1).
All (different) columns of a matrix are orthogonal each other.
For example: v1;v2;v3 => u|_v2 && u|_v3 && v|_v3.
Definition mcolsOrth {r c} (M : mat r c) : Prop :=
forall j1 j2, j1 <> j2 -> mcol M j1 _|_ mcol M j2.
forall j1 j2, j1 <> j2 -> mcol M j1 _|_ mcol M j2.
All (different) rows of a matrix are orthogonal each other.
Definition mrowsOrth {r c} (M : mat r c) : Prop :=
forall i1 i2, i1 <> i2 -> M.[i1] _|_ M.[i2].
Lemma mtrans_mcolsOrth : forall {r c} (M : mat r c), mrowsOrth M -> mcolsOrth (M\T).
Proof. intros. hnf in *. intros. rewrite !mcol_mtrans_eq_mrow. auto. Qed.
Lemma mtrans_mrowsOrth : forall {r c} (M : mat r c), mcolsOrth M -> mrowsOrth (M\T).
Proof. intros. hnf in *. intros. rewrite !mrow_mtrans_eq_mcol. auto. Qed.
forall i1 i2, i1 <> i2 -> M.[i1] _|_ M.[i2].
Lemma mtrans_mcolsOrth : forall {r c} (M : mat r c), mrowsOrth M -> mcolsOrth (M\T).
Proof. intros. hnf in *. intros. rewrite !mcol_mtrans_eq_mrow. auto. Qed.
Lemma mtrans_mrowsOrth : forall {r c} (M : mat r c), mcolsOrth M -> mrowsOrth (M\T).
Proof. intros. hnf in *. intros. rewrite !mrow_mtrans_eq_mcol. auto. Qed.
All columns of a matrix are unit vector.
For example: v1;v2;v3 => unit u && unit v && unit v3
All rows of a matrix are unit vector.
Definition mrowsUnit {r c} (M : mat r c) : Prop := forall i, vunit (M.[i]).
Lemma mtrans_mcolsUnit : forall {r c} (M : mat r c),
mrowsUnit M -> mcolsUnit (M\T).
Proof. intros. hnf in *. intros. rewrite mcol_mtrans_eq_mrow. auto. Qed.
Lemma mtrans_mrowsUnit : forall {r c} (M : mat r c),
mcolsUnit M -> mrowsUnit (M\T).
Proof. intros. hnf in *. intros. rewrite mrow_mtrans_eq_mcol. auto. Qed.
Lemma mtrans_mcolsUnit : forall {r c} (M : mat r c),
mrowsUnit M -> mcolsUnit (M\T).
Proof. intros. hnf in *. intros. rewrite mcol_mtrans_eq_mrow. auto. Qed.
Lemma mtrans_mrowsUnit : forall {r c} (M : mat r c),
mcolsUnit M -> mrowsUnit (M\T).
Proof. intros. hnf in *. intros. rewrite mrow_mtrans_eq_mcol. auto. Qed.
The columns of a matrix is orthogomal
The rows of a matrix is orthogomal
mrowsOrthonormal M -> mcolsOrthonormal (M\T)
Lemma mtrans_mcolsOrthonormal : forall {r c} (M : mat r c),
mrowsOrthonormal M -> mcolsOrthonormal (M\T).
Proof.
intros. hnf in *. destruct H. split.
apply mtrans_mcolsOrth; auto.
apply mtrans_mcolsUnit; auto.
Qed.
mrowsOrthonormal M -> mcolsOrthonormal (M\T).
Proof.
intros. hnf in *. destruct H. split.
apply mtrans_mcolsOrth; auto.
apply mtrans_mcolsUnit; auto.
Qed.
mcolsOrthonormal M -> mrowsOrthonormal (M\T)
Lemma mtrans_mrowsOrthonormal : forall {r c} (M : mat r c),
mcolsOrthonormal M -> mrowsOrthonormal (M\T).
Proof.
intros. hnf in *. destruct H. split.
apply mtrans_mrowsOrth; auto.
apply mtrans_mrowsUnit; auto.
Qed.
End mcolsOrthonormal_mrowsOrthonormal.
mcolsOrthonormal M -> mrowsOrthonormal (M\T).
Proof.
intros. hnf in *. destruct H. split.
apply mtrans_mrowsOrth; auto.
apply mtrans_mrowsUnit; auto.
Qed.
End mcolsOrthonormal_mrowsOrthonormal.
An orthogonal matrix
orthogonal M -> invertible M
Lemma morth_minvtble : forall {n} (M : smat n), morth M -> minvtble M.
Proof.
intros. rewrite minvtble_iff_minvtbleL.
hnf in *. exists (M\T). auto.
Qed.
Proof.
intros. rewrite minvtble_iff_minvtbleL.
hnf in *. exists (M\T). auto.
Qed.
orthogonal M -> M\-1 = M\T
Lemma morth_imply_minv_eq_trans : forall {n} (M : smat n),
morth M -> minv M = M\T.
Proof. intros. hnf in H. apply mmul_eq1_imply_minv_r; auto. Qed.
morth M -> minv M = M\T.
Proof. intros. hnf in H. apply mmul_eq1_imply_minv_r; auto. Qed.
M\-1 = M\T -> orthogonal M
Lemma minv_eq_trans_imply_morth : forall {n} (M : smat n),
minvtble M -> minv M = M\T -> morth M.
Proof. intros. hnf. rewrite <- H0. apply mmul_minv_l; auto. Qed.
minvtble M -> minv M = M\T -> morth M.
Proof. intros. hnf. rewrite <- H0. apply mmul_minv_l; auto. Qed.
orthogonal M <-> M\T * M = mat1
Lemma morth_iff_mul_trans_l : forall {n} (M : smat n),
morth M <-> M\T * M = mat1.
Proof. intros. hnf. auto. Qed.
morth M <-> M\T * M = mat1.
Proof. intros. hnf. auto. Qed.
orthogonal M <-> M * M\T = mat1
Lemma morth_iff_mul_trans_r : forall {n} (M : smat n),
morth M <-> M * M\T = mat1.
Proof.
intros. hnf. split; intros H; auto.
- pose proof (morth_minvtble M H).
apply morth_imply_minv_eq_trans in H. rewrite <- H.
apply mmul_minv_r; auto.
- hnf. rewrite mmul_eq1_comm; auto.
Qed.
morth M <-> M * M\T = mat1.
Proof.
intros. hnf. split; intros H; auto.
- pose proof (morth_minvtble M H).
apply morth_imply_minv_eq_trans in H. rewrite <- H.
apply mmul_minv_r; auto.
- hnf. rewrite mmul_eq1_comm; auto.
Qed.
orthogonal mat1
Lemma morth_mat1 : forall {n}, @morth n mat1.
Proof. intros. hnf. rewrite mtrans_mat1, mmul_1_r. easy. Qed.
Proof. intros. hnf. rewrite mtrans_mat1, mmul_1_r. easy. Qed.
orthogonal M -> orthogonal p -> orthogonal (m * p)
Lemma morth_mul : forall {n} (M N : smat n),
morth M -> morth N -> morth (M * N).
Proof.
intros. hnf. hnf in H, H0. rewrite mtrans_mmul.
rewrite mmul_assoc. rewrite <- (mmul_assoc _ M).
rewrite H. rewrite mmul_1_l. rewrite H0. easy.
Qed.
morth M -> morth N -> morth (M * N).
Proof.
intros. hnf. hnf in H, H0. rewrite mtrans_mmul.
rewrite mmul_assoc. rewrite <- (mmul_assoc _ M).
rewrite H. rewrite mmul_1_l. rewrite H0. easy.
Qed.
orthogonal M -> orthogonal (M\T)
Lemma morth_mtrans : forall {n} (M : smat n), morth M -> morth (M\T).
Proof.
intros. hnf. rewrite mtrans_mtrans.
apply morth_iff_mul_trans_r in H. auto.
Qed.
Proof.
intros. hnf. rewrite mtrans_mtrans.
apply morth_iff_mul_trans_r in H. auto.
Qed.
orthogonal (M\T) -> orthogonal M
Lemma morth_mtrans_inv : forall {n} (M : smat n), morth (M\T) -> morth M.
Proof. intros. apply morth_mtrans in H. rewrite mtrans_mtrans in H. auto. Qed.
Proof. intros. apply morth_mtrans in H. rewrite mtrans_mtrans in H. auto. Qed.
orthogonal M -> orthogonal M\-1
Lemma morth_minv : forall {n} (M : smat n), morth M -> morth (M\-1).
Proof.
intros. hnf.
rewrite morth_imply_minv_eq_trans; auto. rewrite mtrans_mtrans.
apply morth_iff_mul_trans_r; auto.
Qed.
Proof.
intros. hnf.
rewrite morth_imply_minv_eq_trans; auto. rewrite mtrans_mtrans.
apply morth_iff_mul_trans_r; auto.
Qed.
orthogonal M -> |M| = ± 1
Lemma morth_mdet : forall {n} (M : smat n),
morth M -> (mdet M = 1 \/ mdet M = (- (1))%A).
Proof.
intros. unfold morth in H.
pose proof (mdet_mmul (M\T) M). rewrite H in H0.
rewrite mdet_mtrans,mdet_mat1 in H0.
symmetry in H0. apply ring_sqr_eq1_imply_1_neg1 in H0. auto.
Qed.
morth M -> (mdet M = 1 \/ mdet M = (- (1))%A).
Proof.
intros. unfold morth in H.
pose proof (mdet_mmul (M\T) M). rewrite H in H0.
rewrite mdet_mtrans,mdet_mat1 in H0.
symmetry in H0. apply ring_sqr_eq1_imply_1_neg1 in H0. auto.
Qed.
matrix M is orthogonal <-> columns of M are orthogomal
Lemma morth_iff_mcolsOrthonormal : forall {n} (M : smat n),
morth M <-> mcolsOrthonormal M.
Proof.
intros. unfold mcolsOrthonormal, mcolsOrth, mcolsUnit, vorth, vunit.
split; intros.
- split; intros.
+ rewrite vdot_col_col; auto. rewrite H; auto. rewrite mnth_mat1_diff; auto.
+ rewrite vdot_col_col; auto. rewrite H; auto. rewrite mnth_mat1_same; auto.
- destruct H as [H1 H2]. apply meq_iff_mnth; intros.
rewrite <- vdot_col_col; auto.
destruct (i ??= j) as [E|E].
+ fin2nat. rewrite mnth_mat1_same; auto.
+ fin2nat. rewrite mnth_mat1_diff; auto.
Qed.
morth M <-> mcolsOrthonormal M.
Proof.
intros. unfold mcolsOrthonormal, mcolsOrth, mcolsUnit, vorth, vunit.
split; intros.
- split; intros.
+ rewrite vdot_col_col; auto. rewrite H; auto. rewrite mnth_mat1_diff; auto.
+ rewrite vdot_col_col; auto. rewrite H; auto. rewrite mnth_mat1_same; auto.
- destruct H as [H1 H2]. apply meq_iff_mnth; intros.
rewrite <- vdot_col_col; auto.
destruct (i ??= j) as [E|E].
+ fin2nat. rewrite mnth_mat1_same; auto.
+ fin2nat. rewrite mnth_mat1_diff; auto.
Qed.
matrix M is orthogonal <-> rows of M are orthogomal
Lemma morth_iff_mrowsOrthonormal : forall {n} (M : smat n),
morth M <-> mrowsOrthonormal M.
Proof.
intros. split; intros.
- apply morth_mtrans in H. apply morth_iff_mcolsOrthonormal in H.
apply mtrans_mrowsOrthonormal in H. rewrite mtrans_mtrans in H. auto.
- apply mtrans_mcolsOrthonormal in H.
apply morth_iff_mcolsOrthonormal in H. apply morth_mtrans_inv; auto.
Qed.
morth M <-> mrowsOrthonormal M.
Proof.
intros. split; intros.
- apply morth_mtrans in H. apply morth_iff_mcolsOrthonormal in H.
apply mtrans_mrowsOrthonormal in H. rewrite mtrans_mtrans in H. auto.
- apply mtrans_mcolsOrthonormal in H.
apply morth_iff_mcolsOrthonormal in H. apply morth_mtrans_inv; auto.
Qed.
columns of M are orthonormal <-> rows of M are orthonormal
Lemma mcolsOrthonormal_iff_mrowsOrthonormal : forall {n} (M : smat n),
mcolsOrthonormal M <-> mrowsOrthonormal M.
Proof.
intros. rewrite <- morth_iff_mrowsOrthonormal, <- morth_iff_mcolsOrthonormal.
easy.
Qed.
mcolsOrthonormal M <-> mrowsOrthonormal M.
Proof.
intros. rewrite <- morth_iff_mrowsOrthonormal, <- morth_iff_mcolsOrthonormal.
easy.
Qed.
Transformation by orthogonal matrix will keep inner-product
Theorem morth_keep_dot : forall {n} (M : smat n) (u v : vec n),
morth M -> <M *v u, M *v v> = <u, v>.
Proof.
intros. rewrite vdot_eq_mmul. rewrite v2rv_mmulv. rewrite v2cv_mmulv.
rewrite mmul_assoc. rewrite <- (mmul_assoc _ M).
rewrite morth_iff_mul_trans_l in H. rewrite H. rewrite mmul_1_l. auto.
Qed.
Context `{HOrderedField : OrderedField A Aadd 0 Aopp Amul 1 Ainv}.
Context `{HA2R : A2R A Aadd 0 Aopp Amul 1 Ainv Alt Ale a2r}.
Notation vlen := (@vlen _ Aadd 0 Amul a2r).
Notation "|| v ||" := (vlen v) : vec_scope.
morth M -> <M *v u, M *v v> = <u, v>.
Proof.
intros. rewrite vdot_eq_mmul. rewrite v2rv_mmulv. rewrite v2cv_mmulv.
rewrite mmul_assoc. rewrite <- (mmul_assoc _ M).
rewrite morth_iff_mul_trans_l in H. rewrite H. rewrite mmul_1_l. auto.
Qed.
Context `{HOrderedField : OrderedField A Aadd 0 Aopp Amul 1 Ainv}.
Context `{HA2R : A2R A Aadd 0 Aopp Amul 1 Ainv Alt Ale a2r}.
Notation vlen := (@vlen _ Aadd 0 Amul a2r).
Notation "|| v ||" := (vlen v) : vec_scope.
Transformation by orthogonal matrix will keep length.
Corollary morth_keep_length : forall {n} (M : smat n) (v : vec n),
morth M -> ||M *v v|| = ||v||.
Proof.
intros. rewrite vlen_eq_iff_dot_eq. apply morth_keep_dot. auto.
Qed.
morth M -> ||M *v v|| = ||v||.
Proof.
intros. rewrite vlen_eq_iff_dot_eq. apply morth_keep_dot. auto.
Qed.
Transformation by orthogonal matrix will keep zero.
Lemma morth_keep_nonzero : forall {n} (M : smat n) (v : vec n),
v <> vzero -> morth M -> M *v v <> vzero.
Proof.
intros. intro.
pose proof (morth_keep_length M v H0). rewrite H1 in H2.
rewrite vlen_vzero in H2. symmetry in H2.
rewrite vlen_eq0_iff_eq0 in H2. easy.
Qed.
v <> vzero -> morth M -> M *v v <> vzero.
Proof.
intros. intro.
pose proof (morth_keep_length M v H0). rewrite H1 in H2.
rewrite vlen_vzero in H2. symmetry in H2.
rewrite vlen_eq0_iff_eq0 in H2. easy.
Qed.
由于正交矩阵可保持变换向量的长度和角度,它可保持坐标系的整体结构不变。
因此,正交矩阵仅可用于旋转变换和反射变换或二者的组合变换。
当正交矩阵的行列式为1,表示一个旋转,行列式为-1,表示一个反射。
The set of GOn
The condition to form a GOn from a matrix
Definition GOnP {n} (m : smat n) : Prop := morth m.
Lemma GOnP_spec : forall {n} (x : @GOn n), GOnP x.
Proof. intros. apply x. Qed.
Lemma GOnP_spec : forall {n} (x : @GOn n), GOnP x.
Proof. intros. apply x. Qed.
Create a GOn from a matrix satisfing `GOnP`
Two GOn are equal, only need the matrix are equal
Lemma GOn_eq_iff : forall {n} (x1 x2 : @GOn n), GOn_mat x1 = GOn_mat x2 -> x1 = x2.
Proof.
intros. destruct x1,x2; simpl in H.
subst. f_equal. apply proof_irrelevance.
Qed.
Proof.
intros. destruct x1,x2; simpl in H.
subst. f_equal. apply proof_irrelevance.
Qed.
Multiplication of elements in GOn
Definition GOn_mul {n} (x1 x2 : @GOn n) : @GOn n.
refine (Build_GOn (x1 * x2) _).
destruct x1 as [M1 Horth1], x2 as [M2 Horth2]. simpl.
apply morth_mul; auto.
Defined.
refine (Build_GOn (x1 * x2) _).
destruct x1 as [M1 Horth1], x2 as [M2 Horth2]. simpl.
apply morth_mul; auto.
Defined.
Identity element in GOn
GOn_mul is associative
Lemma GOn_mul_assoc : forall n, Associative (@GOn_mul n).
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_assoc.
Qed.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_assoc.
Qed.
GOn_1 is left-identity-element of GOn_mul operation
Lemma GOn_mul_id_l : forall n, IdentityLeft (@GOn_mul n) GOn_1.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_1_l.
Qed.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_1_l.
Qed.
GOn_1 is right-identity-element of GOn_mul operation
Lemma GOn_mul_id_r : forall n, IdentityRight (@GOn_mul n) GOn_1.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_1_r.
Qed.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply mmul_1_r.
Qed.
<GOn, +, 1> is a monoid
Instance GOn_Monoid : forall n, Monoid (@GOn_mul n) GOn_1.
Proof.
intros. constructor; constructor; intros.
apply GOn_mul_assoc.
apply GOn_mul_id_l.
apply GOn_mul_id_r.
apply GOn_mul_assoc.
Qed.
Proof.
intros. constructor; constructor; intros.
apply GOn_mul_assoc.
apply GOn_mul_id_l.
apply GOn_mul_id_r.
apply GOn_mul_assoc.
Qed.
Inverse operation of multiplication in GOn
Definition GOn_inv {n} (x : @GOn n) : @GOn n.
refine (Build_GOn (x\T) _). destruct x as [M Horth]. simpl.
apply morth_mtrans; auto.
Defined.
refine (Build_GOn (x\T) _). destruct x as [M Horth]. simpl.
apply morth_mtrans; auto.
Defined.
GOn_inv is left-inversion of <GOn_mul,GOn_1>
Lemma GOn_mul_inv_l : forall n, InverseLeft (@GOn_mul n) GOn_1 GOn_inv.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply a.
Qed.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl. apply a.
Qed.
GOn_inv is right-inversion of <GOn_mul,GOn_1>
Lemma GOn_mul_inv_r : forall n, InverseRight (@GOn_mul n) GOn_1 GOn_inv.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl.
apply morth_iff_mul_trans_r. apply a.
Qed.
Proof.
intros. constructor; intros. apply GOn_eq_iff; simpl.
apply morth_iff_mul_trans_r. apply a.
Qed.
<GOn, +, 1, /s> is a group
Theorem GOn_Group : forall n, Group (@GOn_mul n) GOn_1 GOn_inv.
Proof.
intros. constructor.
apply GOn_Monoid.
apply GOn_mul_inv_l.
apply GOn_mul_inv_r.
Qed.
Proof.
intros. constructor.
apply GOn_Monoid.
apply GOn_mul_inv_l.
apply GOn_mul_inv_r.
Qed.
M\-1 = M\T
Lemma GOn_imply_minv_eq_trans : forall {n} (M : @GOn n), M\-1 = M\T.
Proof.
intros. destruct M as [M H]. simpl in *.
rewrite morth_imply_minv_eq_trans; auto.
Qed.
End GOn.
Proof.
intros. destruct M as [M H]. simpl in *.
rewrite morth_imply_minv_eq_trans; auto.
Qed.
End GOn.
The set of SOn
The condition to form a SOn from a matrix
Definition SOnP {n} (m : smat n) : Prop := morth m /\ mdet m = 1.
Lemma SOnP_spec : forall {n} (x : @SOn n), SOnP x.
Proof. intros. hnf. destruct x. split; auto. apply SOn_GOn0. Qed.
Lemma SOnP_spec : forall {n} (x : @SOn n), SOnP x.
Proof. intros. hnf. destruct x. split; auto. apply SOn_GOn0. Qed.
The transpose also keep SOn
Lemma SOnP_mtrans : forall {n} (M : smat n), SOnP M -> SOnP (M\T).
Proof.
intros. hnf in *. destruct H. split.
apply morth_mtrans; auto. rewrite mdet_mtrans; auto.
Qed.
Proof.
intros. hnf in *. destruct H. split.
apply morth_mtrans; auto. rewrite mdet_mtrans; auto.
Qed.
Create a SOn from a matrix satisfing `SOnP`
Definition mkSOn {n} (m : smat n) (H : SOnP m) : @SOn n.
refine (Build_SOn (Build_GOn _ m _) _). apply H.
Unshelve. apply H.
Defined.
Lemma SOn_eq_iff_try : forall {n} (x1 x2 : @SOn n),
GOn_mat x1 = GOn_mat x2 -> x1 = x2.
Proof.
intros.
destruct x1 as [[M1 Horth1] Hdet1], x2 as [[M2 Horth2] Hdet2]; simpl in *.
subst. f_equal. - intros. rewrite H1. f_equal.
Abort.
refine (Build_SOn (Build_GOn _ m _) _). apply H.
Unshelve. apply H.
Defined.
Lemma SOn_eq_iff_try : forall {n} (x1 x2 : @SOn n),
GOn_mat x1 = GOn_mat x2 -> x1 = x2.
Proof.
intros.
destruct x1 as [[M1 Horth1] Hdet1], x2 as [[M2 Horth2] Hdet2]; simpl in *.
subst. f_equal. - intros. rewrite H1. f_equal.
Abort.
Two SOn are equal, only need the GOn are equal
Lemma SOn_eq_iff_step1 : forall {n} (x1 x2 : @SOn n),
SOn_GOn x1 = SOn_GOn x2 -> x1 = x2.
Proof.
intros. destruct x1,x2. simpl in *. subst. f_equal. apply proof_irrelevance.
Qed.
SOn_GOn x1 = SOn_GOn x2 -> x1 = x2.
Proof.
intros. destruct x1,x2. simpl in *. subst. f_equal. apply proof_irrelevance.
Qed.
Two SOn are equal, only need the matrix are equal
Lemma SOn_eq_iff : forall {n} (x1 x2 : @SOn n), GOn_mat x1 = GOn_mat x2 -> x1 = x2.
Proof.
intros. apply SOn_eq_iff_step1. simpl in *.
destruct x1,x2. simpl in *. apply GOn_eq_iff. auto.
Qed.
Definition SOn_mul {n} (s1 s2 : @SOn n) : @SOn n.
refine (Build_SOn (GOn_mul s1 s2) _).
destruct s1 as [[M1 Horth1] Hdet1], s2 as [[M2 Horth2] Hdet2]. simpl in *.
rewrite mdet_mmul. rewrite Hdet1,Hdet2. field.
Defined.
Definition SOn_1 {n} : @SOn n.
refine (Build_SOn (GOn_1) _).
apply mdet_mat1.
Defined.
Proof.
intros. apply SOn_eq_iff_step1. simpl in *.
destruct x1,x2. simpl in *. apply GOn_eq_iff. auto.
Qed.
Definition SOn_mul {n} (s1 s2 : @SOn n) : @SOn n.
refine (Build_SOn (GOn_mul s1 s2) _).
destruct s1 as [[M1 Horth1] Hdet1], s2 as [[M2 Horth2] Hdet2]. simpl in *.
rewrite mdet_mmul. rewrite Hdet1,Hdet2. field.
Defined.
Definition SOn_1 {n} : @SOn n.
refine (Build_SOn (GOn_1) _).
apply mdet_mat1.
Defined.
SOn_mul is associative
Lemma SOn_mul_assoc : forall n, Associative (@SOn_mul n).
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_assoc.
Qed.
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_assoc.
Qed.
SOn_1 is left-identity-element of SOn_mul operation
Lemma SOn_mul_id_l : forall n, IdentityLeft SOn_mul (@SOn_1 n).
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_1_l.
Qed.
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_1_l.
Qed.
SOn_1 is right-identity-element of SOn_mul operation
Lemma SOn_mul_id_r : forall n, IdentityRight SOn_mul (@SOn_1 n).
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_1_r.
Qed.
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl. apply mmul_1_r.
Qed.
<SOn, +, 1> is a monoid
Lemma SOn_Monoid : forall n, Monoid (@SOn_mul n) SOn_1.
Proof.
intros. constructor; constructor; intros.
apply SOn_mul_assoc.
apply SOn_mul_id_l.
apply SOn_mul_id_r.
apply SOn_mul_assoc.
Qed.
Definition SOn_inv {n} (x : @SOn n) : @SOn n.
refine (Build_SOn (GOn_inv x) _).
destruct x as [[M Horth] Hdet]; simpl.
rewrite mdet_mtrans. auto.
Defined.
Proof.
intros. constructor; constructor; intros.
apply SOn_mul_assoc.
apply SOn_mul_id_l.
apply SOn_mul_id_r.
apply SOn_mul_assoc.
Qed.
Definition SOn_inv {n} (x : @SOn n) : @SOn n.
refine (Build_SOn (GOn_inv x) _).
destruct x as [[M Horth] Hdet]; simpl.
rewrite mdet_mtrans. auto.
Defined.
SOn_inv is left-inversion of <SOn_mul,SOn_1>
Lemma SOn_mul_inv_l : forall n, InverseLeft SOn_mul SOn_1 (@SOn_inv n).
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl.
destruct a. apply SOn_GOn0.
Qed.
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl.
destruct a. apply SOn_GOn0.
Qed.
SOn_inv is right-inversion of <SOn_mul,SOn_1>
Lemma SOn_mul_inv_r : forall n, InverseRight SOn_mul SOn_1 (@SOn_inv n).
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl.
apply morth_iff_mul_trans_r. destruct a. apply SOn_GOn0.
Qed.
Proof.
intros. constructor; intros. apply SOn_eq_iff; simpl.
apply morth_iff_mul_trans_r. destruct a. apply SOn_GOn0.
Qed.
<SOn, +, 1, /s> is a group
Theorem SOn_Group : forall n, Group (@SOn_mul n) SOn_1 SOn_inv.
Proof.
intros. constructor.
apply SOn_Monoid.
apply SOn_mul_inv_l.
apply SOn_mul_inv_r.
Qed.
Proof.
intros. constructor.
apply SOn_Monoid.
apply SOn_mul_inv_l.
apply SOn_mul_inv_r.
Qed.
Lemma SOn_minv_eq_trans : forall {n} (M : @SOn n), M\-1 = M\T.
Proof.
intros. destruct M as [[M Horth] Hdet]; simpl.
apply morth_imply_minv_eq_trans. auto.
Qed.
Proof.
intros. destruct M as [[M Horth] Hdet]; simpl.
apply morth_imply_minv_eq_trans. auto.
Qed.
M\T * M = mat1
Lemma SOn_mul_trans_l_eq1 : forall {n} (M : @SOn n), M\T * M = mat1.
Proof.
intros. rewrite <- SOn_minv_eq_trans. apply mmul_minv_l.
destruct M as [[M H] H1]. simpl in *.
apply minvtble_iff_mdet_neq0. rewrite H1.
apply field_1_neq_0; auto.
Qed.
Proof.
intros. rewrite <- SOn_minv_eq_trans. apply mmul_minv_l.
destruct M as [[M H] H1]. simpl in *.
apply minvtble_iff_mdet_neq0. rewrite H1.
apply field_1_neq_0; auto.
Qed.
M * M\T = mat1
Lemma SOn_mul_trans_r_eq1 : forall {n} (M : @SOn n), M * M\T = mat1.
Proof.
intros. pose proof (@SOn_mul_trans_l_eq1 n M).
apply mmul_eq1_comm; auto.
Qed.
End SOn.
End MatrixOrth.
Proof.
intros. pose proof (@SOn_mul_trans_l_eq1 n M).
apply mmul_eq1_comm; auto.
Qed.
End SOn.
End MatrixOrth.