FinMatrix.Matrix.MatrixInvBase


Require Export ElementType Matrix MatrixDet.

Matrix is invertible


Section minvtble.
  Context `{HARing : ARing} `{HAeqDec : Dec _ (@eq A)}.
  Add Ring ring_inst : (make_ring_theory HARing).

  Notation "0" := Azero : A_scope.
  Notation "1" := Aone : A_scope.
  Infix "*" := Amul : A_scope.

  Notation vdot := (@vdot _ Aadd 0 Amul).
  Notation "< a , b >" := (vdot a b) : vec_scope.

  Notation mat r c := (mat A r c).
  Notation smat n := (smat A n).
  Notation mmul := (@mmul _ Aadd 0 Amul).
  Infix "*" := mmul : mat_scope.
  Notation mat1 := (@mat1 _ Azero Aone).
  Notation mmulv := (@mmulv _ Aadd 0 Amul).
  Infix "*v" := mmulv : mat_scope.
  Notation mvmul := (@mvmul _ Aadd 0 Amul).
  Infix "v*" := mvmul : mat_scope.
  Notation mcmul := (@mcmul _ Amul).
  Infix "\.*" := mcmul : mat_scope.
  Notation mdet := (@mdet _ Aadd 0 Aopp Amul 1).
  Notation "| M |" := (mdet M) : mat_scope.
  Notation madj := (@madj _ Aadd 0 Aopp Amul 1).
  Notation "M \A" := (madj M) : mat_scope.

Invertible (nonsingular, nondegenerate) matrix

The matrix `M` is invertible
  Definition minvtble {n} (M : smat n) : Prop :=
    exists M', M' * M = mat1 /\ M * M' = mat1.

The matrix `M` is left invertible (i.e., exist a left inverse)
  Definition minvtbleL {n} (M : smat n) : Prop := exists N, N * M = mat1.

The matrix `M` is right invertible (i.e., exist a right inverse)
  Definition minvtbleR {n} (M : smat n) : Prop := exists N, M * N = mat1.

matrix `M` is invertible, imply `M` is left invertible
  Lemma minvtble_imply_minvtbleL : forall {n} (M : smat n),
      minvtble M -> minvtbleL M.
  Proof. intros. hnf in *. destruct H as [M' [H H0]]. exists M'; auto. Qed.

matrix `M` is invertible, imply `M` is right invertible
  Lemma minvtble_imply_minvtbleR : forall {n} (M : smat n),
      minvtble M -> minvtbleR M.
  Proof. intros. hnf in *. destruct H as [M' [H H0]]. exists M'; auto. Qed.

  Context `{HField : Field A Aadd 0 Aopp Amul 1}.
  Add Field field_thy_inst : (make_field_theory HField).
  Notation "/ a" := (Ainv a) : A_scope.
  Notation "a / b" := ((a * /b)%A) : A_scope.

matrix `M` is left invertible, if and only if the determinant is not zero
  Lemma minvtbleL_iff_mdet_neq0 : forall {n} (M : smat n), minvtbleL M <-> |M| <> 0.
  Proof.
    intros. split; intros.
    - hnf in H. destruct H as [M' H].
      apply mmul_eq1_imply_mdet_neq0_r in H. auto.
    - hnf. apply mdet_neq0_imply_mmul_eq1_l. auto.
  Qed.

matrix `M` is right invertible, if and only if the determinant is not zero
  Lemma minvtbleR_iff_mdet_neq0 : forall {n} (M : smat n), minvtbleR M <-> |M| <> 0.
  Proof.
    intros. split; intros.
    - hnf in H. destruct H as [M' H].
      apply mmul_eq1_imply_mdet_neq0_l in H. auto.
    - hnf. apply mdet_neq0_imply_mmul_eq1_r. auto.
  Qed.

A matrix `M` is invertible, if and only if the determinant is not zero
  Lemma minvtble_iff_mdet_neq0 : forall {n} (M : smat n), minvtble M <-> |M| <> 0.
  Proof.
    intros. split; intros.
    - apply minvtble_imply_minvtbleL in H.
      apply minvtbleL_iff_mdet_neq0; auto.
    - hnf. apply mdet_neq0_imply_mmul_eq1. auto.
  Qed.

matrix `M` is left invertible, imply `M` is invertible
  Lemma minvtbleL_imply_minvtble : forall {n} (M : smat n),
      minvtbleL M -> minvtble M.
  Proof.
    intros. rewrite minvtbleL_iff_mdet_neq0 in H.
    rewrite minvtble_iff_mdet_neq0. auto.
  Qed.

matrix `M` is right invertible, imply `M` is invertible
  Lemma minvtbleR_imply_minvtble : forall {n} (M : smat n),
      minvtbleR M -> minvtble M.
  Proof.
    intros. rewrite minvtbleR_iff_mdet_neq0 in H.
    rewrite minvtble_iff_mdet_neq0. auto.
  Qed.

matrix `M` is invertible, if and only if `M` is left invertible
  Lemma minvtble_iff_minvtbleL : forall {n} (M : smat n),
      minvtble M <-> minvtbleL M.
  Proof.
    intros. split; intros.
    apply minvtble_imply_minvtbleL; auto.
    apply minvtbleL_imply_minvtble; auto.
  Qed.

matrix `M` is invertible, if and only if `M` is right invertible
  Lemma minvtble_iff_minvtbleR : forall {n} (M : smat n),
      minvtble M <-> minvtbleR M.
  Proof.
    intros. split; intros.
    apply minvtble_imply_minvtbleR; auto.
    apply minvtbleR_imply_minvtble; auto.
  Qed.

matrix `M` is left invertible, if and only if `M` is right invertible
  Lemma minvtbleL_iff_minvtbleR : forall {n} (M : smat n),
      minvtbleL M <-> minvtbleR M.
  Proof.
    intros. rewrite <- minvtble_iff_minvtbleL.
    rewrite <- minvtble_iff_minvtbleR. tauto.
  Qed.

`M * N = mat1` imply `M` is invertible
  Lemma mmul_eq1_imply_minvtble_l : forall {n} (M N : smat n),
      M * N = mat1 -> minvtble M.
  Proof. intros. rewrite minvtble_iff_minvtbleR. hnf. exists N; auto. Qed.

`M * N = mat1` imply `N` is invertible
  Lemma mmul_eq1_imply_minvtble_r : forall {n} (M N : smat n),
      M * N = mat1 -> minvtble N.
  Proof. intros. rewrite minvtble_iff_minvtbleL. hnf. exists M; auto. Qed.

Transpose preserve `invertible` property
  Lemma mtrans_minvtble : forall n (M : smat n),
      minvtble M -> minvtble (M\T).
  Proof.
    intros. hnf in *. destruct H as [E [Hl Hr]]. exists (E\T). split.
    - hnf. rewrite <- mtrans_mmul. rewrite Hr. apply mtrans_mat1.
    - hnf. rewrite <- mtrans_mmul. rewrite Hl. apply mtrans_mat1.
  Qed.

Multiplication preserve `invertible` property
  Lemma mmul_minvtble: forall {n} (M N : smat n),
      minvtble M -> minvtble N -> minvtble (M * N).
  Proof.
    intros. hnf in *. destruct H as [M' [HL HR]], H0 as [N' [HL1 HR1]]; hnf in *.
    exists (N' * M'). split; hnf.
    - rewrite mmul_assoc. rewrite <- (mmul_assoc M' M). rewrite HL, mmul_1_l; auto.
    - rewrite mmul_assoc. rewrite <- (mmul_assoc N N'). rewrite HR1, mmul_1_l; auto.
  Qed.

mat1 is invertible
  Lemma mat1_minvtble : forall {n}, minvtble (@mat1 n).
  Proof. intros. hnf. exists mat1. split; hnf; rewrite mmul_1_l; auto. Qed.

Left cancellation law of matrix multiplication
  Lemma mmul_cancel_l : forall {r c} (M : smat r) (N1 N2 : mat r c) ,
      minvtble M -> M * N1 = M * N2 -> N1 = N2.
  Proof.
    intros. hnf in H. destruct H as [N [Hl Hr]].
    assert (N * M * N1 = N * M * N2). rewrite !mmul_assoc. rewrite H0. auto.
    rewrite Hl in H. rewrite !mmul_1_l in H. auto.
  Qed.

Right cancellation law of matrix multiplication
  Lemma mmul_cancel_r : forall {r c} (M : smat c) (N1 N2 : mat r c) ,
      minvtble M -> N1 * M = N2 * M -> N1 = N2.
  Proof.
    intros. hnf in H. destruct H as [N [Hl Hr]].
    assert (N1 * M * N = N2 * M * N). rewrite H0. auto.
    rewrite !mmul_assoc in H. rewrite Hr in H. rewrite !mmul_1_r in H. auto.
  Qed.

Cancellation law of matrix multiply vector
  Lemma mmulv_cancel : forall {n} (M : smat n) (a b : vec n),
      minvtble M -> M *v a = M *v b -> a = b.
  Proof.
    intros. hnf in *. destruct H as [N [Hl Hr]].
    assert (N *v (M *v a) = N *v (M *v b)). rewrite H0. auto.
    rewrite <- !mmulv_assoc in H. rewrite Hl in H. rewrite !mmulv_1_l in H. auto.
  Qed.

Cancellation law of vector multipliy matrix
  Lemma mvmul_cancel : forall {n} (M : smat n) (a b : vec n),
      minvtble M -> a v* M = b v* M -> a = b.
  Proof.
    intros. hnf in *. destruct H as [N [Hl Hr]].
    assert (a v* M v* N = b v* M v* N). rewrite H0; auto.
    rewrite <- !mvmul_assoc in H. rewrite Hr in H. rewrite !mvmul_1_r in H. auto.
  Qed.

N1 * M = mat1 -> N2 * M = mat1 -> N1 = N2
  Lemma mmul_eq1_uniq_l : forall {n} (M N1 N2 : smat n),
      N1 * M = mat1 -> N2 * M = mat1 -> N1 = N2.
  Proof.
    intros. rewrite <- H in H0. apply mmul_cancel_r in H0; auto.
    apply mmul_eq1_imply_minvtble_r in H. auto.
  Qed.

M * N1 = mat1 -> M * N2 = mat1 -> N1 = N2
  Lemma mmul_eq1_uniq_r : forall {n} (M N1 N2 : smat n),
      M * N1 = mat1 -> M * N2 = mat1 -> N1 = N2.
  Proof.
    intros. rewrite <- H in H0. apply mmul_cancel_l in H0; auto.
    apply mmul_eq1_imply_minvtble_l in H. auto.
  Qed.

M * N = mat1 -> M = /|N| .* N\A
  Lemma mmul_eq1_imply_det_cmul_adj_l : forall {n} (M N : smat n),
      M * N = mat1 -> M = /|N| \.* N\A.
  Proof.
    intros. apply mmul_eq1_uniq_l with (M:=N); auto.
    apply mmul_det_cmul_adj_l. apply mmul_eq1_imply_mdet_neq0_r in H. auto.
  Qed.

M * N = mat1 -> N = /|M| .* M\A
  Lemma mmul_eq1_imply_det_cmul_adj_r : forall {n} (M N : smat n),
      M * N = mat1 -> N = /|M| \.* M\A.
  Proof.
    intros. apply mmul_eq1_uniq_r with (M:=M); auto.
    apply mmul_det_cmul_adj_r. apply mmul_eq1_imply_mdet_neq0_l in H. auto.
  Qed.

M1 * M2 = mat1 -> M2 * M1 = mat1
  Lemma mmul_eq1_comm : forall {n} (M1 M2 : smat n),
      M1 * M2 = mat1 -> M2 * M1 = mat1.
  Proof.
    intros.
    apply mmul_eq1_imply_det_cmul_adj_l in H as H0. rewrite H0.
    apply mmul_det_cmul_adj_r. apply mmul_eq1_imply_mdet_neq0_r in H. auto.
  Qed.


Singular (degenerate, not invertible) matrix

The matrix `M` is singular (i.e., not invertible)
  Definition msingular {n} (M : smat n) : Prop := ~(minvtble M).

End minvtble.

Interface of matrix inversion core theory

Module Type MinvCore (E : FieldElementType).
  Export E.
  Open Scope A_scope.
  Open Scope mat_scope.


  Notation "0" := Azero : A_scope.
  Notation "1" := Aone : A_scope.
  Infix "*" := Amul : A_scope.
  Notation "/ a" := (Ainv a) : A_scope.
  Notation "a / b" := ((a * /b)%A) : A_scope.

  Notation vdot := (@vdot _ Aadd 0 Amul).
  Notation "< a , b >" := (vdot a b) : vec_scope.

  Notation mat r c := (mat A r c).
  Notation smat n := (smat A n).
  Notation mmul := (@mmul _ Aadd 0 Amul).
  Infix "*" := mmul : mat_scope.
  Notation mat1 := (@mat1 _ Azero Aone).
  Notation mmulv := (@mmulv _ Aadd 0 Amul).
  Infix "*v" := mmulv : mat_scope.
  Notation mvmul := (@mvmul _ Aadd 0 Amul).
  Infix "v*" := mvmul : mat_scope.
  Notation mcmul := (@mcmul _ Amul).
  Infix "\.*" := mcmul : mat_scope.
  Notation mdet := (@mdet _ Aadd 0 Aopp Amul 1).
  Notation "| M |" := (mdet M) : mat_scope.
  Notation madj := (@madj _ Aadd 0 Aopp Amul 1).
  Notation "M \A" := (madj M) : mat_scope.
  Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
  Notation msingular := (@msingular _ Aadd 0 Amul 1).

Check matrix invertibility

Check the invertibility of matrix `M`
  Parameter minvtbleb : forall {n} (M : smat n), bool.

minvtble M <-> minvtbleb M = true
  Axiom minvtble_iff_minvtbleb_true : forall {n} (M : smat n),
      minvtble M <-> minvtbleb M = true.

msingular M <-> minvtbleb M = false
  Axiom msingular_iff_minvtbleb_false : forall {n} (M : smat n),
      msingular M <-> minvtbleb M = false.

Inverse matrix (option version)

Inverse matrix (option version)
  Parameter minvo : forall {n} (M : smat n), option (smat n).

`minvo` return `Some`, iff M is invertible
  Axiom minvo_Some_iff_minvtble : forall {n} (M : smat n),
      (exists M', minvo M = Some M') <-> minvtble M.

`minvo` return `None`, iff M is singular
  Axiom minvo_None_iff_msingular : forall {n} (M : smat n),
      minvo M = None <-> msingular M.

If `minvo M` return `Some M'`, then `M' * M = mat1`
  Axiom minvo_Some_imply_eq1_l : forall {n} (M M' : smat n),
      minvo M = Some M' -> M' * M = mat1.

If `minvo M` return `Some M'`, then `M * M' = mat1`
  Axiom minvo_Some_imply_eq1_r : forall {n} (M M' : smat n),
      minvo M = Some M' -> M * M' = mat1.


Inverse matrix (default value version)

Inverse matrix (with identity matrix as default value)
  Parameter minv : forall {n} (M : smat n), smat n.
  Notation "M \-1" := (minv M) : mat_scope.

If `minvo M` return `Some N`, then `M\-1` equal to `N`
  Axiom minvo_Some_imply_minv : forall {n} (M N : smat n), minvo M = Some N -> M\-1 = N.

If `minvo M` return `None`, then `M\-1` equal to `mat1`
  Axiom minvo_None_imply_minv : forall {n} (M : smat n), minvo M = None -> M\-1 = mat1.

M\-1 * M = mat1
  Axiom mmul_minv_l : forall {n} (M : smat n), minvtble M -> M\-1 * M = mat1.

End MinvCore.

Matrix inversion theory

Matrix inversion theory, dependent on `MinvCore`
Module Minv (F : FieldElementType) (M : MinvCore F).
  Export F.
  Export M.

More properties for minvtbleb,minvo,minv

M * N = mat1 -> minvtbleb M = true
  Lemma mmul_eq1_imply_minvtbleb_true_l : forall {n} (M N : smat n),
      M * N = mat1 -> minvtbleb M = true.
  Proof.
    intros. apply minvtble_iff_minvtbleb_true.
    apply mmul_eq1_imply_minvtble_l in H; auto.
  Qed.

M * N = mat1 -> minvtbleb N = true.
  Lemma mmul_eq1_imply_minvtbleb_true_r : forall {n} (M N : smat n),
      M * N = mat1 -> minvtbleb N = true.
  Proof.
    intros. apply minvtble_iff_minvtbleb_true.
    apply mmul_eq1_imply_minvtble_r in H; auto.
  Qed.

minvtble M -> minvtble (M \-1)
  Lemma minv_minvtble : forall {n} (M : smat n),
      minvtble M -> minvtble (M\-1).
  Proof.
    intros. apply minvtble_iff_minvtbleR. hnf.
    exists M. apply mmul_minv_l; auto.
  Qed.

M * M\-1 = mat1
  Lemma mmul_minv_r : forall {n} (M : smat n), minvtble M -> M * M\-1 = mat1.
  Proof. intros. apply mmul_minv_l in H. apply mmul_eq1_comm; auto. Qed.

M * N = mat1 -> M \-1 = N
  Lemma mmul_eq1_imply_minv_l : forall {n} (M N : smat n), M * N = mat1 -> M\-1 = N.
  Proof.
    intros.
    apply mmul_eq1_imply_minvtble_l in H as H'.
    assert (M * N = M * M\-1). rewrite H. rewrite mmul_minv_r; auto.
    apply mmul_cancel_l in H0; auto.
  Qed.

M * N = mat1 -> N \-1 = M
  Lemma mmul_eq1_imply_minv_r : forall {n} (M N : smat n), M * N = mat1 -> N\-1 = M.
  Proof.
    intros.
    apply mmul_eq1_imply_minvtble_r in H as H'.
    assert (M * N = N\-1 * N). rewrite H. rewrite mmul_minv_l; auto.
    apply mmul_cancel_r in H0; auto.
  Qed.

mat1 \-1 = mat1
  Lemma minv_mat1 : forall n, @minv n mat1 = mat1.
  Proof.
    intros. apply mmul_eq1_imply_minv_l. rewrite mmul_1_l; auto.
  Qed.

minvtble M -> M \-1 \-1 = M
  Lemma minv_minv : forall n (M : smat n), minvtble M -> M \-1 \-1 = M.
  Proof.
    intros. apply mmul_eq1_imply_minv_l. apply mmul_minv_l; auto.
  Qed.

(M * N)\-1 = (N\-1) * (M\-1)
  Lemma minv_mmul : forall n (M N : smat n),
      minvtble M -> minvtble N -> (M * N)\-1 = N\-1 * M\-1.
  Proof.
    intros. apply mmul_eq1_imply_minv_l. rewrite !mmul_assoc.
    rewrite <- (mmul_assoc N). rewrite mmul_minv_r; auto.
    rewrite mmul_1_l. apply mmul_minv_r; auto.
  Qed.

(M \T) \-1 = (M \-1) \T
  Lemma minv_mtrans : forall n (M : smat n),
      minvtble M -> (M \T) \-1 = (M \-1) \T.
  Proof.
    intros. apply mmul_eq1_imply_minv_l. rewrite <- mtrans_mmul.
    rewrite mmul_minv_l; auto. rewrite mtrans_mat1; auto.
  Qed.

|M \-1| = / (|M|)
  Lemma mdet_minv : forall {n} (M : smat n), minvtble M -> |M\-1| = / |M|.
  Proof.
    intros.
    assert (|M * M\-1| = |@mat1 n|). f_equal. apply mmul_minv_r; auto.
    rewrite mdet_mmul, mdet_mat1 in H0.
    apply field_inv_eq_l in H0; auto.
    apply minvtble_iff_mdet_neq0; auto.
  Qed.

Inverse matrix with lists for input and output

Check matrix invertibility with lists as input
  Definition minvtblebList (n : nat) (dl : dlist A) : bool :=
    @minvtbleb n (l2m 0 dl).

Inverse matrix with lists for input and output
  Definition minvList (n : nat) (dl : dlist A) : dlist A :=
    m2l (@minv n (l2m 0 dl)).

`minvtbleb_list` is equal to `minvtbleb`, by definition
  Lemma minvtblebList_spec : forall (n : nat) (dl : dlist A),
      minvtblebList n dl = @minvtbleb n (l2m 0 dl).
  Proof. intros. auto. Qed.

The matrix of minv_list dl is the inverse of the matrix of dl
  Theorem minvList_spec : forall (n : nat) (dl : dlist A),
      let M : smat n := l2m 0 dl in
      let M' : smat n := l2m 0 (minvList n dl) in
      minvtblebList n dl = true ->
      M' * M = mat1.
  Proof.
    intros. unfold minvtblebList in H. unfold minvList in M'.
    unfold M', M. rewrite l2m_m2l. apply mmul_minv_l; auto.
    apply minvtble_iff_minvtbleb_true. auto.
  Qed.

Solve equation by inverse matrix

Solve the equation with the form of C*x=b.
  Definition solveEq {n} (C : smat n) (b : vec n) : vec n := (C\-1) *v b.

C *v (solveEqAM C b) = b
  Theorem solveEq_spec : forall {n} (C : smat n) (b : @vec A n),
      minvtble C -> C *v (solveEq C b) = b.
  Proof.
    intros. unfold solveEq.
    rewrite <- mmulv_assoc. rewrite mmul_minv_r; auto. rewrite mmulv_1_l. auto.
  Qed.

Solve the equation with the form of C*x=b over list
  Definition solveEqList (n : nat) (lC : dlist A) (lb : list A) : list A :=
    let C : smat n := l2m 0 lC in
    let b : vec n := l2v 0 lb in
    let x := solveEq C b in
    v2l x.

{solveEqList lC lb} = solveEq {lC} {lb}
  Theorem solveEqList_spec : forall n (lC : dlist A) (lb : list A),
      let C : smat n := l2m 0 lC in
      let b : vec n := l2v 0 lb in
      l2v 0 (solveEqList n lC lb) = solveEq C b.
  Proof. intros. unfold solveEqList. rewrite l2v_v2l. auto. Qed.

End Minv.