FinMatrix.Matrix.Matrix


Require Export Hierarchy.
Require Export ListExt.
Require Export Vector.
Require Reals.
Require Import Extraction.

Generalizable Variable A Aadd Azero Aopp Amul Aone Ainv.

Control the scope
Open Scope mat_scope.

Matrix type and basic operations


Definition of matrix type

An r*c matrix over A type
Notation mat A r c := (@vec (@vec A c) r).

An n-dimensional square matrix over A type
Notation smat A n := (mat A n n).


Get element of a matrix


Notation "M .11" := (M.1.1) : mat_scope.
Notation "M .12" := (M.1.2) : mat_scope.
Notation "M .13" := (M.1.3) : mat_scope.
Notation "M .14" := (M.1.4) : mat_scope.
Notation "M .21" := (M.2.1) : mat_scope.
Notation "M .22" := (M.2.2) : mat_scope.
Notation "M .23" := (M.2.3) : mat_scope.
Notation "M .24" := (M.2.4) : mat_scope.
Notation "M .31" := (M.3.1) : mat_scope.
Notation "M .32" := (M.3.2) : mat_scope.
Notation "M .33" := (M.3.3) : mat_scope.
Notation "M .34" := (M.3.4) : mat_scope.
Notation "M .41" := (M.4.1) : mat_scope.
Notation "M .42" := (M.4.2) : mat_scope.
Notation "M .43" := (M.4.3) : mat_scope.
Notation "M .44" := (M.4.4) : mat_scope.

i1 = i2 -> j1 = j2 -> = M (nat2fin i1) (nat2fin j1) = M (nat2fin i2) (nat2fin j2)
Lemma mnth_eq :
  forall {A r c} (M : @mat A r c) i1 j1 i2 j2
    (Hi1: i1 < r) (Hi2: i2 < r) (Hj1: j1 < c) (Hj2: j2 < c),
    i1 = i2 -> j1 = j2 ->
    M.[nat2fin i1 Hi1].[nat2fin j1 Hj1] = M.[nat2fin i2 Hi2].[nat2fin j2 Hj2].
Proof. intros. subst. f_equal; apply fin_eq_iff; auto. Qed.

Lemma meq_iff_mnth : forall {A r c} (M N : mat A r c),
    M = N <-> (forall i j, M.[i].[j] = N.[i].[j]).
Proof.
  intros. split; intros; subst; auto.
  apply veq_iff_vnth. intros i.
  apply veq_iff_vnth. intros j. auto.
Qed.

Lemma mneq_iff_exist_mnth_neq : forall {A r c} (M N : mat A r c),
    M <> N <-> (exists i j, M.[i].[j] <> N.[i].[j]).
Proof.
  intros. rewrite meq_iff_mnth. split; intros.
  - apply not_all_ex_not in H. destruct H as [i H].
    apply not_all_ex_not in H. destruct H as [j H]. exists i, j; auto.
  - destruct H as [i [j H]].
    apply ex_not_not_all; auto. exists i.
    apply ex_not_not_all; auto. exists j. auto.
Qed.

Get row and column of a matrix

Section mrow_mcol.
  Context {A} {Azero : A}.
  Notation vzero := (vzero Azero).

  Definition mrow {r c} (M : mat A r c) (i : 'I_r) : @vec A c := M i.

  Lemma vnth_mrow : forall {r c} (M : mat A r c) (i : 'I_r) (j : 'I_c),
      (mrow M i).[j] = M.[i].[j].
  Proof. intros. auto. Qed.

  Definition mcol {r c} (M : mat A r c) (j : 'I_c) : @vec A r := fun i => M i j.
  Notation "M &[ i ]" := (mcol M i) : mat_scope.

  Lemma vnth_mcol : forall {r c} (M : mat A r c) (i : 'I_r) (j : 'I_c),
      M&[j].[i] = M.[i].[j].
  Proof. intros. auto. Qed.

End mrow_mcol.
Notation "M &[ i ]" := (mcol M i) : mat_scope.

matrix transpose

Section mtrans.
  Context {A} (Azero : A).


  Definition mtrans {r c} (M : mat A r c) : mat A c r := fun i j => M.[j].[i].
  Notation "M \T" := (mtrans M) : mat_scope.

(M\T)i,* = M*,i
  Lemma vnth_mtrans : forall {r c} (M : mat A r c) i, (M\T).[i] = fun j => M.[j].[i].
  Proof. intros. auto. Qed.

(M\T)i,j = Mj,i
  Lemma mnth_mtrans : forall {r c} (M : mat A r c) i j, (M\T).[i].[j] = M.[j].[i].
  Proof. intros. auto. Qed.

Transpose twice return back
  Lemma mtrans_mtrans : forall {r c} (M : mat A r c), (M\T)\T = M.
  Proof. intros. auto. Qed.

matrix transpose is injective
  Lemma mtrans_inj : forall {r c : nat} (M1 M2 : mat A r c),
      mtrans M1 = mtrans M2 -> M1 = M2.
  Proof.
    intros. rewrite meq_iff_mnth in H. rewrite meq_iff_mnth; intros.
    specialize (H j i). auto.
  Qed.

  Lemma mcol_mtrans_eq_mrow : forall {r c} (M : mat A r c) (i : 'I_r),
      (M\T)&[i] = M.[i].
  Proof. auto. Qed.

  Lemma mrow_mtrans_eq_mcol : forall {r c} (M : mat A r c) (j : 'I_c),
      (M\T).[j] = M&[j].
  Proof. auto. Qed.

End mtrans.

Notation "M \T" := (mtrans M) : mat_scope.

Get head or tail row

Section mheadr_mtailr.
  Context {A} {Azero : A}.

Get head row
  Definition mheadr {r c} (M : @mat A (S r) c) : @vec A c := vhead M.

(mheadr M).j = M.0.j
  Lemma vnth_mheadr : forall {r c} (M : @mat A (S r) c) j, (mheadr M).[j] = M.[fin0].[j].
  Proof. auto. Qed.


Get tail row
  Definition mtailr {r c} (M : @mat A (S r) c) : @vec A c := vtail M.

(mtailr M).j = M.n-1.j
  Lemma vnth_mtailr : forall {r c} (M : @mat A (S r) c) j,
      (mtailr M).[j] = M.[#r].[j].
  Proof. auto. Qed.

End mheadr_mtailr.

Get head or tail column

Section mheadc_mtailc.
  Context {A} {Azero : A}.

Get head column
  Definition mheadc {r c} (M : @mat A r (S c)) : @vec A r := fun i => vhead (M.[i]).

(mheadc M).i = M.i.0
  Lemma vnth_mheadc : forall {r c} (M : @mat A r (S c)) i, (mheadc M).[i] = M.[i].[fin0].
  Proof. auto. Qed.

Get tail column
  Definition mtailc {r c} (M : @mat A r (S c)) : @vec A r := fun i => vtail (M.[i]).

(mtailc M).i = M.i.(n-1)
  Lemma vnth_mtailc : forall {r c} (M : @mat A r (S c)) i,
      (mtailc M).[i] = M.[i].[#c].
  Proof. auto. Qed.
End mheadc_mtailc.

Row vector and column vector


Definition of row/column vector type


Notation rvec A n := (mat A 1 n).
Notation cvec A n := (mat A n 1).

Convert between cvec and vec

Section cv2v_v2cv.
  Context {A : Type}.
  Notation cvec n := (cvec A n).

  Definition cv2v {n} (M : cvec n) : vec n := fun i => M.[i].[fin0].
  Definition v2cv {n} (a : vec n) : cvec n := fun i j => a.[i].

  Lemma cv2v_spec : forall {n} (M : cvec n) i, M.[i].[fin0] = (cv2v M).[i].
  Proof. auto. Qed.
  Lemma v2cv_spec : forall {n} (a : vec n) i, a.[i] = (v2cv a).[i].[fin0].
  Proof. auto. Qed.

  Lemma cv2v_v2cv : forall {n} (a : vec n), cv2v (v2cv a) = a.
  Proof. intros. apply veq_iff_vnth; intros. cbv. auto. Qed.

  Lemma v2cv_cv2v : forall {n} (M : cvec n), v2cv (cv2v M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros. cbv. f_equal.
    rewrite (fin1_uniq j). apply fin_eq_iff; auto.
  Qed.

  Lemma cv2v_inj : forall {n} (M N : cvec n), cv2v M = cv2v N -> M = N.
  Proof.
    intros. rewrite veq_iff_vnth in H. rewrite meq_iff_mnth.
    unfold cv2v in H. intros. rewrite (fin1_uniq j). auto.
  Qed.

  Lemma v2cv_inj : forall {n} (a b : vec n), v2cv a = v2cv b -> a = b.
  Proof.
    intros. rewrite meq_iff_mnth in H. rewrite veq_iff_vnth.
    unfold v2cv in H. intros. apply (H i fin0).
  Qed.

  Lemma vnth_v2cv : forall {n} (a : vec n) i j, (v2cv a).[i].[j] = a.[i].
  Proof. intros. unfold v2cv. auto. Qed.

  Lemma vnth_cv2v : forall {n} (M : cvec n) i j, (cv2v M).[i] = M.[i].[j].
  Proof. intros. unfold cv2v. f_equal. rewrite (fin1_uniq j); auto. Qed.

End cv2v_v2cv.

Convert between rvec and vec

Section rv2v_v2rv.
  Context {A : Type}.
  Notation rvec n := (rvec A n).

  Definition rv2v {n} (M : rvec n) : vec n := fun i => M.[fin0].[i].
  Definition v2rv {n} (a : vec n) : rvec n := fun i j => a.[j].

  Lemma rv2v_spec : forall {n} (M : rvec n) i, M.[fin0].[i] = (rv2v M).[i].
  Proof. auto. Qed.
  Lemma v2rv_spec : forall {n} (a : vec n) i, a.[i] = (v2rv a).[fin0].[i].
  Proof. auto. Qed.

  Lemma rv2v_v2rv : forall {n} (a : vec n), rv2v (v2rv a) = a.
  Proof. intros. apply veq_iff_vnth; intros. cbv. auto. Qed.

  Lemma v2rv_rv2v : forall {n} (M : rvec n), v2rv (rv2v M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros. cbv. f_equal. rewrite (fin1_uniq i).
    apply fin_eq_iff; auto.
  Qed.

  Lemma vnth_v2rv : forall {n} (a : vec n) i, (v2rv a).[i] = a.
  Proof. intros. unfold v2rv. auto. Qed.

End rv2v_v2rv.

Convert between cvec and rvec


Lemma v2rv_cv2v : forall {A n} (M : cvec A n), v2rv (cv2v M) = fun i j => M.[j].[i].
Proof.
  intros. apply meq_iff_mnth; intros. cbv. f_equal.
  rewrite (fin1_uniq i). apply fin_eq_iff; auto.
Qed.

Make a matrix


Zero matrix

Section mat0.
  Context {A} {Azero : A}.
  Definition mat0 {r c} : mat A r c := fun _ _ => Azero.

mat0i,j = 0
  Lemma mnth_mat0 : forall {r c} i j, (@mat0 r c).[i].[j] = Azero.
  Proof. intros. auto. Qed.

row mat0 i = vzero
  Lemma mrow_mat0 : forall {r c} i, (@mat0 r c).[i] = vzero Azero.
  Proof. intros. auto. Qed.

  Lemma mcol_mat0 : forall {r c} j, (@mat0 r c)&[j] = vzero Azero.
  Proof. intros. auto. Qed.

mat0\T = mat0
  Lemma mtrans_mat0 : forall {r c : nat}, (@mat0 r c)\T = mat0.
  Proof. intros. auto. Qed.

End mat0.

Convert between list of rvec and mat

Section rvl2m_m2rvl.
  Context {A} (Azero : A).
  Notation mat r c := (mat A r c).

mat to `list of row vectors`
  Definition m2rvl {r c} (M : mat r c) : list (@vec A c) :=
    map (fun i => M.[i]) (finseq r).

`list of row vectors` to mat
  Definition rvl2m {r c} (l : list (@vec A c)) : mat r c :=
    fun i => nth i l (vzero Azero).

  Lemma m2rvl_rvl2m : forall {r c} (l : list (@vec A c)),
      length l = r -> @m2rvl r c (rvl2m l) = l.
  Proof.
    intros. unfold m2rvl, rvl2m.
    apply (list_eq_ext (vzero Azero) r); auto.
    - intros. rewrite nth_map_finseq with (E:=H0). f_equal.
    - rewrite map_length, finseq_length. auto.
  Qed.

  Lemma rvl2m_m2rvl : forall {r c} (M : mat r c), rvl2m (m2rvl M) = M.
  Proof.
    intros. unfold rvl2m, m2rvl. apply meq_iff_mnth; intros.
    rewrite nth_map_finseq with (E:=fin2nat_lt _). f_equal. apply fin_fin2nat.
  Qed.
End rvl2m_m2rvl.

Convert between list of cvec and mat

Section cvl2m_m2cvl.
  Context {A} (Azero : A).
  Notation mat r c := (mat A r c).
mat to `list of column vectors`
  Definition m2cvl {r c} (M : mat r c) : list (@vec A r) :=
    map (fun i j => M j i) (finseq c).

`list of column vectors` to mat
  Definition cvl2m {r c} (l : list (@vec A r)) : mat r c :=
    fun i j => (nth j l (vzero Azero)).[i].

  Lemma m2cvl_cvl2m : forall {r c} (l : list (@vec A r)),
      length l = c -> @m2cvl r c (cvl2m l) = l.
  Proof.
    intros. unfold m2cvl, cvl2m.
    apply (list_eq_ext (vzero Azero) c); auto.
    - intros. rewrite nth_map_finseq with (E:=H0).
      apply veq_iff_vnth; intros j. f_equal.
    - rewrite map_length, finseq_length. auto.
  Qed.

  Lemma cvl2m_m2cvl : forall {r c} (M : mat r c), cvl2m (m2cvl M) = M.
  Proof.
    intros. unfold cvl2m, m2cvl. apply meq_iff_mnth; intros.
    rewrite nth_map_finseq with (E:=fin2nat_lt _). f_equal. apply fin_fin2nat.
  Qed.

End cvl2m_m2cvl.

Convert between function and mat

Section f2m_m2f.
  Context {A} (Azero : A).

  Definition f2m {r c} (f : nat -> nat -> A) : mat A r c :=
    @f2v _ r (fun i => @f2v A c (f i)).

  Lemma f2m_inj : forall {r c} (f g : nat -> nat -> A),
      @f2m r c f = @f2m r c g -> (forall i j, i < r -> j < c -> f i j = g i j).
  Proof.
    intros. unfold f2m in H.
    apply f2v_inj with (i:=i) in H; auto.
    apply f2v_inj with (i:=j) in H; auto.
  Qed.

(f2m f).i.j = f i j
  Lemma mnth_f2m : forall {r c} (f : nat -> nat -> A) i j,
      (@f2m r c f) i j = f i j.
  Proof. auto. Qed.

(f2m f).i = f2v (f i)
  Lemma vnth_f2m : forall {r c} (f : nat -> nat -> A) i,
      (@f2m r c f).[i] = f2v (f i).
  Proof. auto. Qed.

  Definition m2f {r c} (M : mat A r c) : (nat -> nat -> A) :=
    fun i => @v2f _ Azero c (@v2f _ (vzero Azero) r M i).

(m2f M) i j = Mnat2fin i.nat2fin j
  Lemma nth_m2f : forall {r c} (M : @mat A r c) (i j : nat) (Hi : i < r)(Hj : j < c),
      (m2f M) i j = M.[nat2fin i Hi].[nat2fin j Hj].
  Proof. intros. unfold m2f,v2f. fin. f_equal; fin. Qed.

(m2f M) i j = M#i,#j
  Lemma nth_m2f_nat2finS : forall {r c} (M : @mat A (S r) (S c)) i j,
      i < S r -> j < S c -> (m2f M) i j = M.[#i].[#j].
  Proof.
    intros. rewrite nth_m2f with (Hi:=H)(Hj:=H0).
    rewrite nat2finS_eq with (E:=H). rewrite nat2finS_eq with (E:=H0). auto.
  Qed.

  Lemma m2f_inj : forall {r c} (M1 M2 : @mat A r c),
      (forall i j, i < r -> j < c -> (m2f M1) i j = (m2f M2) i j) -> M1 = M2.
  Proof.
    intros. apply meq_iff_mnth; intros.
    specialize (H i j (fin2nat_lt _) (fin2nat_lt _)).
    rewrite !nth_m2f with (Hi:=fin2nat_lt _)(Hj:=fin2nat_lt _) in H.
    fin.
  Qed.

  Lemma f2m_m2f : forall {r c} (M : @mat A r c), f2m (m2f M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros. rewrite mnth_f2m.
    rewrite nth_m2f with (Hi:=fin2nat_lt _)(Hj:=fin2nat_lt _).
    fin.
  Qed.

  Lemma m2f_f2m : forall {r c} (f : nat -> nat -> A),
    forall i j, i < r -> j < c -> m2f (@f2m r c f) i j = f i j.
  Proof.
    intros. rewrite nth_m2f with (Hi:=H)(Hj:=H0).
    rewrite mnth_f2m. fin.
  Qed.
End f2m_m2f.

Convert between dlist and mat

Section l2m_m2l.
  Context {A} (Azero : A).

mat to dlist
  Definition m2l {r c} (M : mat A r c) : dlist A := map v2l (v2l M).

  Lemma m2l_length : forall {r c} (M : mat A r c), length (m2l M) = r.
  Proof. intros. unfold m2l. rewrite map_length. rewrite v2l_length; auto. Qed.

  Lemma m2l_width : forall {r c} (M : mat A r c), width (m2l M) c.
  Proof.
    intros. unfold width,m2l. apply Forall_map_forall.
    intros. apply v2l_length.
  Qed.

  Lemma nth_m2l_length : forall {r c} (M : mat A r c) i,
      i < r -> length (nth i (m2l M) []) = c.
  Proof.
    intros. unfold m2l.
    rewrite nth_map with (n:=r)(Azero:=vzero Azero); auto; rewrite v2l_length; auto.
  Qed.

  Lemma m2l_inj : forall {r c} (M N : mat A r c), m2l M = m2l N -> M = N.
  Proof.
    intros. unfold m2l in H. apply map_inj in H; auto. apply v2l_inj; auto.
    intros. apply v2l_inj; auto.
  Qed.

  Lemma nth_m2l : forall {r c} (M : @mat A r c) i j (Hi : i < r) (Hj : j < c),
      nth j (nth i (m2l M) []) Azero = M.[nat2fin i Hi].[nat2fin j Hj].
  Proof.
    intros. unfold m2l. erewrite nth_map with (n:=r)(Azero:=vzero Azero); auto.
    - rewrite nth_v2l with (E:=Hi). rewrite nth_v2l with (E:=Hj). auto.
    - apply v2l_length.
  Qed.

  Definition l2m {r c} (d : dlist A) : mat A r c :=
    l2v (vzero Azero) (map (l2v Azero) d).

  Lemma mnth_l2m : forall {r c} (d : dlist A) i j,
      length d = r -> width d c ->
      (@l2m r c d).[i].[j] = nth j (nth i d []) Azero.
  Proof.
    intros. unfold l2m. rewrite vnth_l2v.
    rewrite nth_map with (n:=r)(Azero:=[]); auto; fin.
  Qed.

  Lemma l2m_inj : forall {r c} (d1 d2 : dlist A),
      length d1 = r -> width d1 c ->
      length d2 = r -> width d2 c ->
      @l2m r c d1 = @l2m r c d2 -> d1 = d2.
  Proof.
    intros. unfold l2m in H3. apply l2v_inj in H3; try rewrite map_length; auto.
    apply map_inj in H3; auto.
    intros. apply l2v_inj in H6; auto.
    apply (width_imply_in_length a d1); auto.
    apply (width_imply_in_length b d2); auto.
  Qed.

  Lemma l2m_m2l : forall {r c} (M : mat A r c), (@l2m r c (m2l M)) = M.
  Proof.
    intros. unfold l2m,m2l.
    apply veq_iff_vnth; intros i.
    apply veq_iff_vnth; intros j.
    rewrite !vnth_l2v.
    rewrite nth_map with (n:=r)(Azero:=[]); fin.
    - rewrite nth_map with (n:=r)(Azero:=vzero Azero); fin.
      + rewrite l2v_v2l.
        rewrite nth_v2l with (E:=fin2nat_lt _); fin.
      + apply v2l_length.
    - rewrite map_length. apply v2l_length.
  Qed.

  Lemma m2l_l2m : forall {r c} (d : dlist A),
      length d = r -> width d c -> m2l (@l2m r c d) = d.
  Proof.
    intros. unfold l2m,m2l; simpl. rewrite v2l_l2v.
    - rewrite map_map. apply map_id_In; intros. apply v2l_l2v.
      apply (width_imply_in_length a d); auto.
    - rewrite map_length; auto.
  Qed.

  Lemma l2m_surj : forall {r c} (M : mat A r c), (exists d, @l2m r c d = M).
  Proof. intros. exists (m2l M). apply l2m_m2l. Qed.

  Lemma m2l_surj : forall {r c} (d : dlist A),
      length d = r -> width d c -> (exists M : mat A r c, m2l M = d).
  Proof. intros. exists (@l2m r c d). apply m2l_l2m; auto. Qed.

End l2m_m2l.

Construct matrix with two matrices

Section mapp.
  Context {A} {Azero : A}.
  Notation m2f := (m2f Azero).

Append matrix by row
  Definition mappr {r1 r2 c} (M : mat A r1 c) (N : mat A r2 c)
    : mat A (r1 + r2) c :=
    f2m (fun i j => if (i ??< r1)%nat then m2f M i j else m2f N (i - r1) j).

Append matrix by column
  Definition mappc {r c1 c2} (M : mat A r c1) (N : mat A r c2)
    : mat A r (c1 + c2) :=
    f2m (fun i j => if (j ??< c1)%nat then m2f M i j else m2f N i (j - c1)).
End mapp.

Section test.
  Let M := @l2m _ 9 2 2 [[1;2];[3;4]].
  Let N := @l2m _ 9 2 2 [[11;12];[13;14]].
End test.

matrix with specific size


Section mat_specific.
  Context {A} {Azero : A}.
  Notation l2m := (l2m Azero).
  Variable r c : nat.
  Variable a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44 : A.

Create matrix

  Definition mkmat_0_c : mat A 0 c := vzero (vzero Azero).   Definition mkmat_r_0 : mat A r 0 := vzero (vzero Azero).
  Definition mkmat_1_c (a : @vec A c) : mat A 1 c := fun i j => a j.
  Definition mkmat_r_1 (a : @vec A r) : mat A r 1 := fun i j => a i.

  Definition mkmat_1_1 : mat A 1 1 := l2m [[a11]].
  Definition mkmat_1_2 : mat A 1 2 := l2m [[a11;a12]].
  Definition mkmat_2_1 : mat A 2 1 := l2m [[a11];[a21]].
  Definition mkmat_2_2 : mat A 2 2 := l2m [[a11;a12];[a21;a22]].
  Definition mkmat_1_3 : mat A 1 3 := l2m [[a11;a12;a13]].
  Definition mkmat_2_3 : mat A 2 3 := l2m [[a11;a12;a13];[a21;a22;a23]].
  Definition mkmat_3_1 : mat A 3 1 := l2m [[a11];[a21];[a31]].
  Definition mkmat_3_2 : mat A 3 2 := l2m [[a11;a12];[a21;a22];[a31;a32]].
  Definition mkmat_3_3 : mat A 3 3 :=
    l2m [[a11;a12;a13];[a21;a22;a23];[a31;a32;a33]].
  Definition mkmat_1_4 : mat A 1 4 := l2m [[a11;a12;a13;a14]].
  Definition mkmat_4_1 : mat A 4 1 := l2m [[a11];[a21];[a31];[a41]].
  Definition mkmat_4_4 : mat A 4 4 :=
    l2m [[a11;a12;a13;a14];[a21;a22;a23;a24];[a31;a32;a33;a34];[a41;a42;a43;a44]].
End mat_specific.

Make a diagonal matrix

Section mdiag.
  Context {A} (Azero:A).

A matrix is a diagonal matrix
  Definition mdiag {n} (M : smat A n) : Prop :=
    forall i j, i <> j -> M.[i].[j] = Azero.

Transpose of a diagonal matrix keep unchanged
  Lemma mtrans_diag : forall {n} (M : smat A n), mdiag M -> M\T = M.
  Proof.
    intros. hnf in H. apply meq_iff_mnth; intros i j.
    rewrite mnth_mtrans. destruct (i ??= j) as [E|E].
    - apply fin2nat_eq_iff in E; rewrite E. auto.
    - apply fin2nat_neq_iff in E. rewrite !H; auto.
  Qed.

Construct a diagonal matrix
  Definition mdiagMk {n} (a : @vec A n) : @smat A n :=
    fun i j => if i ??= j then a.[i] else Azero.

mdiagMk is correct
  Lemma mdiagMk_spec : forall {n} (a : @vec A n), mdiag (mdiagMk a).
  Proof. intros. hnf. intros. unfold mdiagMk. fin. Qed.

(mdiagMk l)i,i = li
  Lemma mnth_mdiagMk_same : forall {n} (a : @vec A n) i, (mdiagMk a).[i].[i] = a.[i].
  Proof. intros. unfold mdiagMk. fin. Qed.

(mdiagMk l)i,j = 0
  Lemma mnth_mdiagMk_diff : forall {n} (a : @vec A n) i j,
      i <> j -> (mdiagMk a).[i].[j] = Azero.
  Proof. intros. unfold mdiagMk. fin. Qed.

End mdiag.

Matrix by mapping one matrix

Notation mmap f M := (vmap (vmap f) M).

Lemma mnth_mmap : forall {A B} {r c} (M : mat A r c) (f:A -> B) i j,
    (mmap f M).[i].[j] = f (M.[i].[j]).
Proof. intros. unfold mmap. auto. Qed.

Matrix by mapping two matrices

Notation mmap2 f M N := (vmap2 (vmap2 f) M N).

Lemma mnth_mmap2 : forall {A B C} {r c} (M : mat A r c) (N : mat B r c)
                     (f : A -> B -> C) i j,
    (mmap2 f M N).[i].[j] = f (M.[i].[j]) (N.[i].[j]).
Proof. intros. unfold mmap2. auto. Qed.

Lemma mmap2_comm `{Commutative A Aadd} : forall {r c} (M N : mat A r c),
    mmap2 Aadd M N = mmap2 Aadd N M.
Proof. intros. apply meq_iff_mnth; intros. unfold mmap2. apply commutative. Qed.

Lemma mmap2_assoc `{Associative A Aadd} : forall {r c} (M N O : mat A r c),
    mmap2 Aadd (mmap2 Aadd M N) O = mmap2 Aadd M (mmap2 Aadd N O).
Proof. intros. apply meq_iff_mnth; intros. unfold mmap2. apply associative. Qed.

Update a matrix


Set row or column of a matrix

Section mset.
  Context {A} (Azero : A).

set row
  Definition msetr {r c} (M : mat A r c) (a : @vec A c) (i0 : 'I_r) : mat A r c :=
    fun i j => if i ??= i0 then a.[j] else M.[i].[j].

  Lemma mnth_msetr_same : forall {r c} (M : mat A r c) (a : @vec A c) (i0 : 'I_r) i j,
      i = i0 -> (msetr M a i0).[i].[j] = a.[j].
  Proof. intros. unfold msetr. fin. Qed.

  Lemma mnth_msetr_diff : forall {r c} (M : mat A r c) (a : @vec A c) (i0 : 'I_r) i j,
      i <> i0 -> (msetr M a i0).[i].[j] = M.[i].[j].
  Proof. intros. unfold msetr. fin. Qed.

set column
  Definition msetc {r c} (M : mat A r c) (a : @vec A r) (j0 : 'I_c) : mat A r c :=
    fun i j => if j ??= j0 then a.[i] else M.[i].[j].

  Lemma mnth_msetc_same : forall {r c} (M : mat A r c) (a : @vec A r) (j0 : 'I_c) i j,
      j = j0 -> (msetc M a j0).[i].[j] = a.[i].
  Proof. intros. unfold msetc. fin. Qed.

  Lemma mnth_msetc_diff : forall {r c} (M : mat A r c) (a : @vec A r) (j0 : 'I_c) i j,
      j <> j0 -> (msetc M a j0).[i].[j] = M.[i].[j].
  Proof. intros. unfold msetc. fin. Qed.

End mset.

Remove one row at head or tail

Section mremoverH_mremoverT.
  Context {A} {Azero : A}.
  Notation v2f := (v2f Azero).
  Notation vzero := (vzero Azero).

mremoverH

Remove head row
  Definition mremoverH {r c} (M : @mat A (S r) c) : @mat A r c := vremoveH M.

(mremoverH M).i.j = M.(S i).j
  Lemma mnth_mremoverH : forall {r c} (M : @mat A (S r) c) i j,
      (mremoverH M).[i].[j] = M.[fSuccRangeS i].[j].
  Proof. auto. Qed.


mremoverT

Remove tail row
  Definition mremoverT {r c} (M : @mat A (S r) c) : @mat A r c := vremoveT M.

(mremoverT M).i.j = M.i.j
  Lemma mnth_mremoverT : forall {r c} (M : @mat A (S r) c) i j,
      (mremoverT M).[i].[j] = M.[fSuccRange i].[j].
  Proof. auto. Qed.

End mremoverH_mremoverT.

Remove one column at head or tail

Section mremovecH_mremovecT.
  Context {A} {Azero : A}.
  Notation v2f := (v2f Azero).
  Notation vzero := (vzero Azero).

mremovecH

Remove head column
  Definition mremovecH {r c} (M : @mat A r (S c)) : @mat A r c :=
    fun i => vremoveH (M.[i]).

(mremovecH M).i.j = M.i.(S j)
  Lemma mnth_mremovecH : forall {r c} (M : @mat A r (S c)) i j,
      (mremovecH M).[i].[j] = M.[i].[fSuccRangeS j].
  Proof. auto. Qed.


mremovecT

Remove tail column
  Definition mremovecT {r c} (M : @mat A r (S c)) : @mat A r c :=
    fun i => vremoveT (M.[i]).

(mremovecT M).i.j = M.i.j
  Lemma mnth_mremovecT : forall {r c} (M : @mat A r (S c)) i j,
      (mremovecT M).[i].[j] = M.[i].[fSuccRange j].
  Proof. auto. Qed.

End mremovecH_mremovecT.

Construct matrix from vector and matrix

Section mcons.
  Context {A} (Azero:A).

Construct a matrix with a row vector and a matrix
  Definition mconsrH {r c} (a : @vec A c) (M : mat A r c) : mat A (S r) c :=
    vconsH a M.

  Lemma mnth_mconsrH_0 : forall {r c} (a : @vec A c) (M : mat A r c) j,
      (mconsrH a M).[fin0].[j] = a.[j].
  Proof. intros. unfold mconsrH. rewrite vnth_vconsH_0; auto. Qed.

  Lemma mnth_mconsrH_gt0 :
    forall {r c} (a : @vec A c) (M : mat A r c) (i : 'I_(S r)) (j : 'I_c) (H : 0 < i),
      (mconsrH a M).[i].[j] = M.[fPredRangeP i H].[j].
  Proof.
    intros. unfold mconsrH. erewrite vnth_vconsH_gt0. f_equal.
  Qed.

  Lemma vnth_mconsrH_0 : forall {r c} (a : vec c) (M : mat A r c),
      (mconsrH a M).[fin0] = a.
  Proof. intros. auto. Qed.

  Lemma vnth_mconsrH_gt0 :
    forall {r c} (a : vec c) (M : mat A r c) (i : 'I_(S r)) (H : 0 < i),
      (mconsrH a M).[i] = M.[fPredRangeP i H].
  Proof.
    intros. unfold mconsrH. erewrite vnth_vconsH_gt0. auto.
  Qed.

  Lemma mconsrH_spec : forall {r c} (a : @vec A c) (M : mat A r c),
      let fa := v2f Azero a in
      let fM := m2f Azero M in
      let faM := m2f Azero (mconsrH a M) in
      (forall j, j < c -> faM 0 j = fa j) /\
        (forall i j, 0 < i < r -> j < c -> faM i j = fM (i - 1) j).
  Proof.
    intros. unfold fa,fM,faM,m2f,mconsrH. split; intros; auto; f_equal.
    assert (i < S r) by lia. rewrite nth_v2f with (H:=H1).
    assert (i - 1 < r) by lia. rewrite nth_v2f with (H:=H2).
    assert (0 < nat2fin i H1) by (simpl; lia).
    rewrite vnth_vconsH_gt0 with (H:= H3); auto. f_equal.
    apply fin_eq_iff; auto. simpl. lia.
  Qed.

mconsrH (mheadr M) (mremoverH M) = M
  Lemma mconsrH_mremoverH_mtailr : forall {r c} (M : @mat A (S r) c),
      mconsrH (mheadr M) (mremoverH M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros i j. destruct (fin2nat i ??= 0)%nat as [E|E].
    - assert (i = fin0). destruct i; fin. rewrite H.
      rewrite mnth_mconsrH_0; auto.
    - assert (0 < fin2nat i) by lia.
      rewrite mnth_mconsrH_gt0 with (H:=H); auto.
      rewrite mnth_mremoverH. fin.
  Qed.


Construct a matrix with a matrix and a row vector
  Definition mconsrT {r c} (M : mat A r c) (a : @vec A c) : mat A (S r) c :=
    vconsT M a.

  Lemma mnth_mconsrT : forall {r c} (M : mat A r c) (a : @vec A c) i j,
      (mconsrT M a).[i].[j] = (vconsT M&[j] a.[j]).[i].
  Proof. intros. unfold mconsrT. unfold vconsT. fin. Qed.

  Lemma mnth_mconsrT_n : forall {r c} (M : mat A r c) (a : @vec A c) i j,
      i = nat2finS r -> (mconsrT M a).[i].[j] = a.[j].
  Proof.
    intros. rewrite H. unfold mconsrT. rewrite vnth_vconsT_n; auto.
    rewrite fin2nat_nat2finS; auto.
  Qed.

  Lemma mnth_mconsrT_lt :
    forall {r c} (M : mat A r c) (a : @vec A c) i j (E : fin2nat i < r),
      (mconsrT M a).[i].[j] = M.[fPredRange i E].[j].
  Proof.
    intros. unfold mconsrT. erewrite vnth_vconsT_lt. f_equal.
  Qed.

  Lemma mcol_mconsrT : forall {r c} (M : mat A r c) (a : @vec A c) (j : 'I_c),
      (mconsrT M a)&[j] = vconsT M&[j] a.[j].
  Proof.
    intros. apply veq_iff_vnth; intros.
    rewrite vnth_mcol. rewrite mnth_mconsrT. auto.
  Qed.

  Lemma vnth_mconsrT_n : forall {r c} (M : mat A r c) (a : @vec A c) i,
      fin2nat i = r -> (mconsrT M a).[i] = a.
  Proof. intros. unfold mconsrT. rewrite vnth_vconsT_n; auto. Qed.

  Lemma vnth_mconsrT_lt :
    forall {r c} (M : mat A r c) (a : @vec A c) (i : 'I_(S r)) (H : fin2nat i < r),
      (mconsrT M a).[i] = M.[fPredRange i H].
  Proof. intros. unfold mconsrT. rewrite vnth_vconsT_lt with (H:=H). auto. Qed.

mconsrT (mremoverT M) (mtailr M) = M
  Lemma mconsrT_mremoverT_mtailr : forall {r c} (M : @mat A (S r) c),
      mconsrT (mremoverT M) (mtailr M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros i j. destruct (fin2nat i ??= r)%nat as [E|E].
    - rewrite mnth_mconsrT_n; auto.
      + rewrite vnth_mtailr. f_equal.
        destruct i. erewrite nat2finS_eq. fin.
      + destruct i. erewrite nat2finS_eq. fin.
    - erewrite mnth_mconsrT_lt. rewrite mnth_mremoverT. fin.
      Unshelve. all: fin. pose proof (fin2nat_lt i). lia.
  Qed.


Construct a matrix with a column vector and a matrix
  Definition mconscH {r c} (a : @vec A r) (M : mat A r c) : mat A r (S c) :=
    @vmap2 A (vec c) (vec (S c)) vconsH r a M.

  Lemma vnth_mconscH : forall {r c} (M : mat A (S r) c) (a : vec (S r)) (i : 'I_(S r)),
      (mconscH a M).[i] = vconsH (a.[i]) (M.[i]).
  Proof. intros. auto. Qed.

  Lemma mnth_mconscH_0 : forall {r c} (a : @vec A r) (M : mat A r c) i,
      (mconscH a M).[i].[fin0] = a.[i].
  Proof.
    intros. unfold mconscH. rewrite vnth_vmap2. rewrite vnth_vconsH_0; auto.
  Qed.

  Lemma mnth_mconscH_gt0 :
    forall {r c} (M : mat A r c) (a : @vec A r) i j (E : 0 < fin2nat j),
      (mconscH a M).[i].[j] = M.[i].[fPredRangeP j E].
  Proof.
    intros. unfold mconscH. rewrite vnth_vmap2. erewrite vnth_vconsH_gt0. f_equal.
  Qed.

mconscH (mheadc M) (mremovecH M) = M
  Lemma mconscH_mheadc_mremovecH : forall {r c} (M : @mat A r (S c)),
      mconscH (mheadc M) (mremovecH M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros i j. destruct (fin2nat j ??= 0)%nat as [E|E].
    - assert (j = fin0). destruct j; apply fin_eq_iff; auto. rewrite H.
      rewrite mnth_mconscH_0; auto.
    - assert (0 < fin2nat j) by lia.
      rewrite mnth_mconscH_gt0 with (E:=H); auto.
      rewrite mnth_mremovecH. f_equal. apply fSuccRangeS_fPredRangeP.
  Qed.

mconscH (vconsT a x) (vconsT M b) = vconsT (mconscH a M) (vconsH x b)
  Lemma mconscH_vconsT_vconsT_eq_vconsT_mconscH_vconsH :
    forall {r c} (a : vec r) (x : A) (M : mat A r c) (b : vec c),
      mconscH (vconsT a x) (vconsT M b) = vconsT (mconscH a M) (vconsH x b).
  Proof with try apply fin2nat_nat2finS; auto.
    intros. apply meq_iff_mnth; intros.
    destruct (fin2nat j ??= 0)%nat as [E|E].
    - assert (j = fin0). destruct j; apply fin_eq_iff; auto. rewrite H.
      rewrite mnth_mconscH_0; auto.
      destruct (fin2nat i ??= r)%nat as [E1|E1].
      + rewrite !vnth_vconsT_n; auto.
      + assert (fin2nat i < r). pose proof (fin2nat_lt i). lia.
        rewrite !vnth_vconsT_lt with (H:=H0); auto.
    - assert (0 < fin2nat j) by lia. rewrite mnth_mconscH_gt0 with (E:=H).
      destruct (fin2nat i ??= r)%nat.
      + rewrite !vnth_vconsT_n; auto.
        assert (0 < fin2nat j) by lia.
        rewrite vnth_vconsH_gt0 with (H:=H0). f_equal. apply fin_eq_iff; auto.
      + assert (fin2nat i < r). pose proof (fin2nat_lt i). lia.
        rewrite !vnth_vconsT_lt with (H:=H0); auto.
        assert (0 < fin2nat j) by lia. rewrite mnth_mconscH_gt0 with (E:=H1).
        f_equal. apply fin_eq_iff; auto.
  Qed.


Construct a matrix with a matrix and a column vector
  Definition mconscT {r c} (M : mat A r c) (a : @vec A r) : mat A r (S c) :=
    @vmap2 (vec c) A (vec (S c)) vconsT r M a.

  Lemma mnth_mconscT : forall {r c} (M : mat A r c) (a : @vec A r) i j,
      (mconscT M a).[i].[j] = (vconsT M.[i] a.[i]).[j].
  Proof. auto. Qed.

  Lemma mnth_mconscT_n : forall {r c} (M : mat A r c) (a : @vec A r) i j,
      fin2nat j = c -> (mconscT M a).[i].[j] = a.[i].
  Proof.
    intros. unfold mconscT. rewrite vnth_vmap2.
    rewrite vnth_vconsT_n; auto.
  Qed.

  Lemma mnth_mconscT_lt :
    forall {r c} (M : mat A r c) (a : @vec A r) i j (H : fin2nat j < c),
      (mconscT M a).[i].[j] = M.[i].[fPredRange j H].
  Proof.
    intros. unfold mconscT. rewrite vnth_vmap2. erewrite vnth_vconsT_lt. f_equal.
  Qed.

  Lemma vnth_mconscT : forall {r c} (M : mat A r c) (a : @vec A r) i,
      (mconscT M a).[i] = vconsT M.[i] a.[i].
  Proof. auto. Qed.

  Lemma mcol_mconscT_n : forall {r c} (M : mat A r c) (a : @vec A r) j,
      fin2nat j = c -> (mconscT M a)&[j] = a.
  Proof.
    intros. apply veq_iff_vnth; intros.
    rewrite vnth_mcol. rewrite mnth_mconscT_n; auto.
  Qed.

  Lemma mcol_mconscT_lt :
    forall {r c} (M : mat A r c) (a : @vec A r) (j : 'I_(S c)) (H : fin2nat j < c),
      (mconscT M a)&[j] = M&[fPredRange j H].
  Proof.
    intros. apply veq_iff_vnth; intros. rewrite !vnth_mcol.
    erewrite mnth_mconscT_lt; auto.
  Qed.

mconscT (mremovecT M) (mtailc M) = M
  Lemma mconscT_mremovecT_mtailc : forall {r c} (M : @mat A r (S c)),
      mconscT (mremovecT M) (mtailc M) = M.
  Proof.
    intros. apply meq_iff_mnth; intros i j. destruct (fin2nat j ??= c)%nat.
    - rewrite mnth_mconscT_n; auto.
      rewrite vnth_mtailc. f_equal. fin.
    - assert (fin2nat j < c). pose proof (fin2nat_lt j). lia.
      rewrite mnth_mconscT_lt with (H:=H).
      rewrite mnth_mremovecT. fin.
  Qed.

mconscT (mconsrT M a) (vconsT b x) = mconsrT (mconscT M b) (vconsT a x)
  Lemma mconscT_mconsrT_vconsT :
    forall {r c} (M : mat A r c) (a : @vec A c) (b : @vec A r) (x : A),
      mconscT (mconsrT M a) (vconsT b x) = mconsrT (mconscT M b) (vconsT a x).
  Proof.
    intros. apply meq_iff_mnth; intros.
    rewrite mnth_mconscT, mnth_mconsrT. unfold vconsT. fin.
    - erewrite mnth_mconsrT_lt, mcol_mconscT_lt. rewrite vnth_mcol. auto.
    - assert (fin2nat i = r). pose proof (fin2nat_lt i). fin.
      rewrite mnth_mconsrT_n; auto. fin.
    - assert (fin2nat j = c). pose proof (fin2nat_lt j). fin.
      rewrite vnth_mcol. rewrite mnth_mconscT_n; auto.
  Qed.

End mcons.

Section test.

  Let a : @vec nat 2 := l2v 9 [1;2].
  Let M : @mat nat 2 2 := l2m 9 [[3;4];[5;6]].

End test.

matrix column shift

Section mcsh.
  Context {A} (Azero : A).

left shift column.
  Definition mcshl {r c} (M : mat A r c) (k : 'I_c) : mat A r c :=
    fun i j =>
      if (fin2nat j + fin2nat k ??< c)%nat
      then M.[i].[fin2SameRangeAdd j k]
      else Azero.

right shift column.
  Definition mcshr {r c} (M : mat A r c) (k : 'I_c) : mat A r c :=
    fun i j =>
      if (fin2nat k ??<= fin2nat j)%nat
      then M.[i].[fin2SameRangeSub j k]
      else Azero.

loop shift left of column.
  Definition mclsl {r c} (M : @mat A r c) (k : 'I_c) : @mat A r c :=
    fun i j => M.[i].[fin2SameRangeLSL j k].

loop shift right of column
  Definition mclsr {r c} (M : @mat A r c) (k : 'I_c) : @mat A r c :=
    fun i j => M.[i].[fin2SameRangeLSR j k].

End mcsh.

Section test.
  Let M := @l2m _ 0 3 3 [[1;2;3];[4;5;6];[7;8;9]].


End test.

Algebraic operations


Matrix Addition

Section madd.
  Context `{AMonoid}.
  Notation mat r c := (mat A r c).
  Infix "+" := Aadd : A_scope.
  Notation vadd := (@vadd _ Aadd).
  Infix "+" := vadd : vec_scope.
  Notation mat0 := (@mat0 _ Azero).

  Definition madd {r c} (M N : mat r c) : mat r c := mmap2 Aadd M N.
  Infix "+" := madd : mat_scope.

(M+N)i,j = Mi,j + Ni,j
  Lemma mnth_madd : forall {r c} (M N : mat r c) i j,
      (M + N).[i].[j] = (M.[i].[j] + N.[i].[j])%A.
  Proof. intros. auto. Qed.

(M+N)i = Mi + Ni
  Lemma vnth_madd : forall {r c} (M N : mat r c) i,
      (M + N).[i] = (M.[i] + N.[i])%V.
  Proof. intros. auto. Qed.

(M+N)&i = M&i + N&i
  Lemma mcol_madd : forall {r c} (M N : mat r c) i,
      (M + N)&[i] = (M&[i] + N&[i])%V.
  Proof. intros. auto. Qed.

  Lemma cv2v_madd : forall {n} (a b : cvec A n),
      cv2v (a + b) = (cv2v a + cv2v b)%V.
  Proof. intros. apply veq_iff_vnth; intros. cbv. auto. Qed.

  Lemma madd_assoc : forall {r c} (M N O : mat r c),
      (M + N) + O = M + (N + O).
  Proof. intros. apply mmap2_assoc. Qed.

  Lemma madd_comm : forall {r c} (M N : mat r c), M + N = N + M.
  Proof. intros. apply mmap2_comm. Qed.

0 + M = M
  Lemma madd_0_l : forall {r c} (M : mat r c), mat0 + M = M.
  Proof.
    intros. unfold madd. apply meq_iff_mnth; intros.
    rewrite mnth_mmap2. rewrite mnth_mat0. amonoid.
  Qed.

M + 0 = M
  Lemma madd_0_r : forall {r c} (M : mat r c), M + mat0 = M.
  Proof. intros. rewrite madd_comm, madd_0_l; auto. Qed.

  Instance madd_Associative : forall r c, @Associative (mat r c) madd.
  Proof. intros. constructor. apply madd_assoc. Qed.

  Instance madd_Commutative : forall r c, @Commutative (mat r c) madd.
  Proof. intros. constructor. apply madd_comm. Qed.

  Instance madd_IdentityLeft : forall r c, @IdentityLeft (mat r c) madd mat0.
  Proof. intros. constructor. apply madd_0_l. Qed.

  Instance madd_IdentityRight : forall r c, @IdentityRight (mat r c) madd mat0.
  Proof. intros. constructor. apply madd_0_r. Qed.

  Instance madd_AMonoid : forall r c, AMonoid (@madd r c) mat0.
  Proof.
    intros. repeat constructor; intros;
      try apply associative;
      try apply commutative;
      try apply identityLeft;
      try apply identityRight.
  Qed.

(M + N) + O = (M + O) + N
  Lemma madd_perm : forall {r c} (M N O : mat r c), (M + N) + O = (M + O) + N.
  Proof. intros. pose proof(madd_AMonoid r c). amonoid. Qed.

(M + N)\T = M\T + N\T
  Lemma mtrans_madd : forall {r c} (M N : mat r c), (M + N)\T = M\T + N\T.
  Proof.
    auto.
  Qed.
End madd.

Matrix Trace

Section mtrace.
  Context `{AMonoid}.
  Notation smat n := (smat A n).
  Notation vsum := (@vsum _ Aadd Azero).
  Infix "+" := Aadd : A_scope.
  Notation madd := (@madd _ Aadd).
  Infix "+" := madd : mat_scope.

  Definition mtrace {n : nat} (M : smat n) : A := vsum (fun i => M.[i].[i]).
  Notation "'tr' M" := (mtrace M).

tr(M\T) = tr(M)
  Lemma mtrace_mtrans : forall {n} (M : smat n), tr (M\T) = tr M.
  Proof. intros. apply vsum_eq; intros. apply mnth_mtrans. Qed.

tr(M + N) = tr(M) + tr(N)
  Lemma mtrace_madd : forall {n} (M N : smat n), tr (M + N) = (tr M + tr N)%A.
  Proof.
    intros. unfold madd, mtrace. rewrite vsum_add; intros.
    apply vsum_eq; intros. rewrite mnth_mmap2. auto.
  Qed.
End mtrace.

Section malg.

  Context `{HAGroup : AGroup}.
  Notation "0" := Azero : A_scope.
  Infix "+" := Aadd : A_scope.
  Notation "- a" := (Aopp a) : A_scope.
  Notation Asub := (fun a b => a + (- b)).
  Infix "-" := Asub : A_scope.

  Notation vzero := (vzero Azero).
  Notation vsum := (@vsum _ Aadd Azero).
  Notation vadd := (@vadd _ Aadd).
  Infix "+" := vadd : vec_scope.

  Notation mat r c := (mat A r c).
  Notation smat n := (smat A n).
  Notation mat0 := (@mat0 _ Azero).
  Notation madd := (@madd _ Aadd).
  Notation mtrace := (@mtrace _ Aadd 0 _).
  Infix "+" := madd : mat_scope.
  Notation "'tr' M" := (mtrace M).

Matrix Opposition

  Section mopp.
    Notation vopp := (@vopp _ Aopp).
    Notation "- v" := (vopp v) : vec_scope.

    Definition mopp {r c} (M : mat r c) : mat r c := mmap Aopp M.
    Notation "- M" := (mopp M) : mat_scope.

(- M)i = - Mi
    Lemma vnth_mopp : forall {r c} (M : mat r c) i, (- M).[i] = (- (M.[i]))%V.
    Proof. intros. auto. Qed.

(- M)&i = - (M&i)
    Lemma mcol_mopp : forall {r c} (M : mat r c) i, (- M)&[i] = (- M&[i])%V.
    Proof. intros. auto. Qed.

(- M)i, j = - Mi, j
    Lemma mnth_mopp : forall {r c} (M : mat r c) i j, (- M).[i].[j] = (- M.[i].[j])%A.
    Proof. intros. auto. Qed.

    Lemma madd_opp_l : forall {r c} (M : mat r c), (- M) + M = mat0.
    Proof.
      intros. unfold madd,mopp,mat0,mmap2,mmap. apply meq_iff_mnth; intros. agroup.
    Qed.

    Lemma madd_opp_r : forall {r c} (M : mat r c), M + (- M) = mat0.
    Proof. intros. rewrite madd_comm. apply madd_opp_l. Qed.

    Instance madd_InverseLeft : forall r c, @InverseLeft (mat r c) madd mat0 mopp.
    Proof. intros. constructor. apply madd_opp_l. Qed.

    Instance madd_InverseRight : forall r c, @InverseRight (mat r c) madd mat0 mopp.
    Proof. intros. constructor. apply madd_opp_r. Qed.

    Instance madd_AGroup : forall r c, @AGroup (mat r c) madd mat0 mopp.
    Proof.
      intros. repeat constructor;
        try apply associative;
        try apply identityLeft;
        try apply identityRight;
        try apply inverseLeft;
        try apply inverseRight;
        try apply commutative.
    Qed.


    Example madd_agroup_example1 : forall r c (M N : mat r c), mat0 + M + (- N) + N = M.
    Proof.
      intros. pose proof (madd_AGroup r c).
      agroup.
    Qed.

  • (- M) = M
    Lemma mopp_mopp : forall {r c} (M : mat r c), - (- M) = M.
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

  • M = N <-> M = - N
    Lemma mopp_exchange : forall {r c} (M N : mat r c), - M = N <-> M = - N.
    Proof. intros. pose proof (madd_AGroup r c). simp; agroup. Qed.

  • (mat0) = mat0
    Lemma mopp_mat0 : forall {r c:nat}, - (@Matrix.mat0 _ 0 r c) = mat0.
    Proof. intros. pose proof (madd_AGroup r c). simp; agroup. Qed.

  • (m1 + m2) = (-m1) + (-m2)
    Lemma mopp_madd : forall {r c : nat} (M N : mat r c), - (M + N) = (- M) + (- N).
    Proof. intros. pose proof (madd_AGroup r c). simp; agroup. Qed.

(- M)\T = - (M\T)
    Lemma mtrans_mopp : forall {r c} (M : mat r c), (- M)\T = - (M\T).
    Proof. auto. Qed.

tr(- M) = - (tr(m))
    Lemma mtrace_mopp : forall {n} (M : smat n), tr (- M) = (- (tr M))%A.
    Proof.
      intros. unfold mopp, mtrace. rewrite vsum_opp; intros.
      apply vsum_eq; intros. rewrite !vnth_vmap; auto.
    Qed.
  End mopp.
  Notation "- M" := (mopp M) : mat_scope.

Matrix Subtraction

  Section msub.
    Notation msub M N := (M + (- N)).
    Infix "-" := msub : mat_scope.

M - N = - (N - M)
    Lemma msub_comm : forall {r c} (M N : mat r c), M - N = - (N - M).
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

(M - N) - O = M - (N + O)
    Lemma msub_assoc : forall {r c} (M N O : mat r c),
        (M - N) - O = M - (N + O).
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

(M + N) - O = M + (N - O)
    Lemma msub_assoc1 : forall {r c} (M N O : mat r c), (M + N) - O = M + (N - O).
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

(M - N) - O = M - (O - N)
    Lemma msub_assoc2 : forall {r c} (M N O : mat r c), (M - N) - O = (M - O) - N.
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

0 - M = - M
    Lemma msub_0_l : forall {r c} (M : mat r c), mat0 - M = - M.
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

M - 0 = M
    Lemma msub_0_r : forall {r c} (M : mat r c), M - mat0 = M.
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

M - M = 0
    Lemma msub_self : forall {r c} (M : mat r c), M - M = mat0.
    Proof. intros. pose proof (madd_AGroup r c). agroup. Qed.

(M - N)\T = M\T - N\T
    Lemma mtrans_msub : forall {r c} (M N : mat r c), (M - N)\T = M\T - N\T.
    Proof. auto. Qed.

tr(M - N) = tr(M) - tr(N)
    Lemma mtrace_msub : forall {n} (M N : smat n), tr (M - N) = (tr M - tr N)%A.
    Proof. intros. rewrite mtrace_madd, mtrace_mopp; auto. Qed.
  End msub.
  Notation "M - N" := ((M + - N)%M) : mat_scope.

  Context `{HARing : ARing A Aadd 0 Aopp}.
  Infix "*" := Amul : A_scope.
  Notation "1" := Aone : A_scope.
  Add Ring ring_inst : (make_ring_theory HARing).

  Notation vcmul := (@vcmul _ Amul).
  Infix "\.*" := vcmul : vec_scope.
  Notation vdot v1 v2 := (@vdot _ Aadd 0 Amul _ v1 v2).
  Notation "< v1 , v2 >" := (vdot v1 v2) : vec_scope.

Unit matrix

  Section mat1.
    Definition mat1 {n} : smat n := fun i j => if i ??= j then 1 else 0.

mat1\T = mat1
    Lemma mtrans_mat1 : forall {n : nat}, (@mat1 n)\T = mat1.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold mtrans,mat1. fin.
    Qed.

mat1i,i = 1
    Lemma mnth_mat1_same : forall {n} i, (@mat1 n).[i].[i] = 1.
    Proof. intros. unfold mat1. fin. Qed.

i <> j -> mat1i,j = 0
    Lemma mnth_mat1_diff : forall {n} i j, i <> j -> (@mat1 n).[i].[j] = 0.
    Proof. intros. unfold mat1. fin. Qed.

mat1 is diagonal matrix
    Lemma mat1_diag : forall {n : nat}, mdiag 0 (@mat1 n).
    Proof. intros. hnf. intros. rewrite mnth_mat1_diff; auto. Qed.

M = I -> a = 0 -> b = 0 -> x = 1 mconscT (mconsrT M a) (vconsT b x) = I
    Lemma mconscT_mconsrT_vconsT_eq1 : forall {n} (M : smat n) (a b : vec n)(x : A),
        M = mat1 -> a = vzero -> b = vzero -> x = Aone ->
        mconscT (mconsrT M a) (vconsT b x) = mat1.
    Proof.
      intros. subst. apply meq_iff_mnth; intros. rewrite mnth_mconscT.
      unfold vconsT, mconsrT, vconsT. fin; try rewrite vnth_vzero.
      - rewrite mnth_mat1_diff; auto.
        assert (fin2nat i <> fin2nat j) by lia. apply fin2nat_neq_iff in H; auto.
      - rewrite mnth_mat1_diff; auto.
        assert (fin2nat i <> fin2nat j) by lia. apply fin2nat_neq_iff in H; auto.
      - pose proof (fin2nat_lt i). pose proof (fin2nat_lt j).
        assert (fin2nat i = fin2nat j) by lia. apply fin2nat_eq_iff in H1.
        subst. rewrite mnth_mat1_same. auto.
    Qed.

M = I -> a = 0 -> b = 0 -> x = 1 mconsrT (mconscT M a) (vconsT b x) = I
    Lemma mconsrT_mconscT_vconsT_eq1 : forall {n} (M : smat n) (a b : vec n)(x : A),
        M = mat1 -> a = vzero -> b = vzero -> x = Aone ->
        mconsrT (mconscT M a) (vconsT b x) = mat1.
    Proof.
      intros. subst. apply meq_iff_mnth; intros. rewrite mnth_mconsrT.
      unfold vconsT, mconscT, vconsT, mcol, vmap2. fin; try rewrite vnth_vzero.
      - rewrite mnth_mat1_diff; auto.
        assert (fin2nat i <> fin2nat j) by lia. apply fin2nat_neq_iff in H; auto.
      - rewrite mnth_mat1_diff; auto.
        assert (fin2nat i <> fin2nat j) by lia. apply fin2nat_neq_iff in H; auto.
      - pose proof (fin2nat_lt i). pose proof (fin2nat_lt j).
        assert (fin2nat i = fin2nat j) by lia. apply fin2nat_eq_iff in H1.
        subst. rewrite mnth_mat1_same. auto.
    Qed.

  End mat1.


Matrix Scalar Multiplication

  Section mcmul.
    Definition mcmul {r c : nat} (a : A) (M : mat r c) : mat r c := mmap (Amul a) M.
    Infix "\.*" := mcmul : mat_scope.

(a * M)i = a * Mi
    Lemma vnth_mcmul : forall {r c} (M : mat r c) a i,
        (a \.* M).[i] = (a \.* (M.[i]))%V.
    Proof. intros. auto. Qed.

(a * M)&i = a * M&i
    Lemma mcol_mcmul : forall {r c} (M : mat r c) a i,
        (a \.* M)&[i] = (a \.* M&[i])%V.
    Proof. intros. auto. Qed.

(a * M)i,j = a * Mi,j
    Lemma mnth_mcmul : forall {r c} (M : mat r c) a i j,
        (a \.* M).[i].[j] = a * (M.[i].[j]).
    Proof. intros. unfold mcmul. rewrite !vnth_vmap. auto. Qed.

    Lemma cv2v_mcmul : forall {n} (x : A) (a : cvec A n),
        cv2v (x \.* a) = (x \.* (cv2v a))%V.
    Proof. intros. apply veq_iff_vnth; intros. cbv. auto. Qed.

a * (b * M) = (a * b) * M
    Lemma mcmul_assoc : forall {r c} (M : mat r c) a b,
        a \.* (b \.* M) = (a * b)%A \.* M.
    Proof. intros. apply meq_iff_mnth; intros. rewrite !mnth_mcmul. agroup. Qed.

a * (b * M) = b * (a * M)
    Lemma mcmul_perm : forall {r c} (M : mat r c) a b,
        a \.* (b \.* M) = b \.* (a \.* M).
    Proof. intros. rewrite !mcmul_assoc. f_equal. ring. Qed.

a * (M + N) = (a * M) + (a * N)
    Lemma mcmul_madd_distr : forall {r c} a (M N : mat r c),
        a \.* (M + N) = (a \.* M) + (a \.* N).
    Proof.
      intros. apply meq_iff_mnth; intros.
      rewrite !mnth_mcmul, !mnth_madd, !mnth_mcmul. ring.
    Qed.

(a + b) * M = (a * M) + (b * M)
    Lemma mcmul_add_distr : forall {r c} a b (M : mat r c),
        (a + b)%A \.* M = (a \.* M) + (b \.* M).
    Proof.
      intros. apply meq_iff_mnth; intros.
      rewrite !mnth_mcmul, !mnth_madd, !mnth_mcmul. ring.
    Qed.

    Lemma mcmul_0_l : forall {r c} (M : mat r c), 0 \.* M = mat0.
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite !mnth_mcmul, !mnth_mat0. ring.
    Qed.

a \.* mat0 = mat0
    Lemma mcmul_0_r : forall {r c} a, a \.* (@Matrix.mat0 _ 0 r c) = mat0.
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite !mnth_mcmul, !mnth_mat0. ring.
    Qed.

1 \.* M = M
    Lemma mcmul_1_l : forall {r c} (M : mat r c), 1 \.* M = M.
    Proof. intros. apply meq_iff_mnth; intros. rewrite !mnth_mcmul. ring. Qed.

a \.* mat1 = mdiag(a,a,...)
    Lemma mcmul_1_r : forall {n} a, a \.* (@mat1 n) = mdiagMk 0 (vrepeat a).
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite mnth_mcmul.
      destruct (i ??= j) as [E|E]; fin.
      - apply fin2nat_eq_iff in E; rewrite E.
        rewrite mnth_mdiagMk_same. rewrite mnth_mat1_same, vnth_vrepeat. ring.
      - apply fin2nat_neq_iff in E.
        rewrite mnth_mat1_diff, mnth_mdiagMk_diff; auto. ring.
    Qed.

    Lemma mcmul_opp : forall {r c} a (M : mat r c), (- a)%A \.* M = - (a \.* M).
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite mnth_mopp,!mnth_mcmul. ring.
    Qed.

    Lemma mcmul_mopp : forall {r c} a (M : mat r c), a \.* (- M) = - (a \.* M).
    Proof.
      intros. apply meq_iff_mnth; intros.
      rewrite !mnth_mopp,!mnth_mcmul,mnth_mopp. ring.
    Qed.

    Lemma mcmul_opp_mopp : forall {r c} a (M : mat r c),
        (- a)%A \.* (- M) = a \.* M.
    Proof. intros. rewrite mcmul_mopp, mcmul_opp. apply group_opp_opp. Qed.

a \.* (M - N) = (a \.* M) - (a \.* N)
    Lemma mcmul_msub : forall {r c} a (M N : mat r c),
        a \.* (M - N) = (a \.* M) - (a \.* N).
    Proof. intros. rewrite mcmul_madd_distr. rewrite mcmul_mopp. auto. Qed.

(a \.* M)\T = a \.* (m\T)
    Lemma mtrans_mcmul : forall {r c} (a : A) (M : mat r c), (a \.* M)\T = a \.* (M\T).
    Proof.
      intros. apply meq_iff_mnth; intros.
      rewrite mnth_mtrans, !mnth_mcmul, mnth_mtrans. auto.
    Qed.

tr (a \.* M) = a * tr (m)
    Lemma mtrace_mcmul : forall {n} (a : A) (M : smat n), tr (a \.* M) = (a * tr M)%A.
    Proof.
      intros. unfold mcmul, mtrace. rewrite vsum_cmul_l; intros.
      apply vsum_eq; intros. rewrite mnth_mmap. auto.
    Qed.
  End mcmul.
  Infix "\.*" := mcmul : mat_scope.


Matrix Multiplication

  Section mmul.
    Definition mmul_old {r c t : nat} (M : mat r c) (N : mat c t) : mat r t :=
      vmap (fun v1 => vmap (fun v2 => <v1,v2>) (mtrans N)) M.

    Definition mmul {r c t : nat} (M : mat r c) (N : mat c t) : mat r t :=
      fun i j => <M.[i], (fun k => N.[k].[j])>.
    Infix "*" := mmul : mat_scope.

(M * N)i,j = <row M i, col N j>
    Lemma mnth_mmul : forall {r c t} (M : mat r c) (N : mat c t) i j,
        (M * N).[i].[j] = <M.[i], N&[j]>.
    Proof. intros. auto. Qed.

(M * N)i = <row M i, col N j>
    Lemma vnth_mmul : forall {r c t} (M : mat r c) (N : mat c t) i,
        (M * N).[i] = vmap (fun v => <M.[i],v>) (N\T).
    Proof. intros. auto. Qed.

N is cvec -> M * N = fun i => <N, M.i>
    Lemma mmul_cvec : forall {r c} (M : mat r c) (N : cvec A c),
        M * N = fun i j => <cv2v N, M.[i]>.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold cv2v.
      unfold mmul. rewrite vdot_comm. rewrite (fin1_uniq j). auto.
    Qed.

M is rvec -> M * N = fun i j => <M, N&j>
    Lemma mmul_rvec : forall {r c} (M : rvec A r) (N : mat r c),
        M * N = fun i j => <rv2v M, N&[j]>.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold rv2v, mcol.
      unfold mmul. rewrite (fin1_uniq i). auto.
    Qed.

<row(M,i), col(N,j)> = M * N.ij
    Lemma vdot_row_col : forall {r c s} (M : mat r c) (N : mat c s) i j,
        <M.[i], N&[j]> = (M * N).[i].[j].
    Proof. intros. apply vsum_eq; intros; auto. Qed.

<col(M,i), col(N,j)> = (M\T * N)i,j
    Lemma vdot_col_col : forall {n} (M N : smat n) i j,
        <M&[i], N&[j]> = (M\T * N).[i].[j].
    Proof. intros. apply vsum_eq. intros; auto. Qed.

<row(M,i), row(N,j)> = (M * N\T)i,j
    Lemma vdot_row_row : forall {n} (M N : smat n) i j,
        <M.[i], N.[j]> = (M * N\T).[i].[j].
    Proof. intros. apply vsum_eq. intros; auto. Qed.

<a, b> = (a\T * b).11
    Lemma vdot_eq_mmul : forall {n} (a b : vec n), <a, b> = (v2rv a * v2cv b).11.
    Proof. intros. apply vsum_eq; intros; auto. Qed.

(M * N) * O = M * (N * O)
    Lemma mmul_assoc : forall {m n r s} (M : mat m n) (N : mat n r) (O : mat r s),
        (M * N) * O = M * (N * O).
    Proof. intros. unfold mmul. apply meq_iff_mnth; intros. apply vdot_assoc. Qed.

M * (N + O) = M * N + M * O
    Lemma mmul_madd_distr_l : forall {r c t} (M : mat r c) (N O : mat c t),
        M * (N + O) = (M * N) + (M * O).
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite mnth_madd, !mnth_mmul.
      unfold vdot. rewrite vsum_add. apply vsum_eq; intros k.
      rewrite !vnth_vmap2. rewrite mcol_madd. rewrite vnth_vadd. ring.
    Qed.

(M + N) * O = M * O + N * O
    Lemma mmul_madd_distr_r : forall {r c t} (M N : mat r c) (O : mat c t),
        (M + N) * O = (M * O) + (N * O).
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite mnth_madd,!mnth_mmul.
      unfold vdot. rewrite vsum_add; apply vsum_eq; intros k.
      rewrite !vnth_vmap2, mnth_madd. ring.
    Qed.

  • (M * N) = (- M) * N
    Lemma mmul_mopp_l : forall {r c t} (M : mat r c) (N : mat c t),
        - (M * N) = (- M) * N.
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite mnth_mopp, !mnth_mmul.
      unfold vdot. rewrite vsum_opp; apply vsum_eq; intros k.
      rewrite !vnth_vmap2, mnth_mopp. ring.
    Qed.

  • (M * N) = M * (- N)
    Lemma mmul_mopp_r : forall {r c t} (M : mat r c) (N : mat c t),
        - (M * N) = M * (- N).
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite mnth_mopp, !mnth_mmul.
      unfold vdot. rewrite vsum_opp; apply vsum_eq; intros k.
      rewrite !vnth_vmap2. rewrite !vnth_mcol. rewrite mnth_mopp. ring.
    Qed.

M * (N - O) = M * N - M * O
    Lemma mmul_msub_distr_l : forall {r c t} (M : mat r c) (N O : mat c t),
        M * (N - O) = (M * N) - (M * O).
    Proof.
      intros. rewrite mmul_madd_distr_l. rewrite mmul_mopp_r. auto.
    Qed.

(M - N) * O = M * O - N * O
    Lemma mmul_msub_distr_r : forall {r c t} (M N : mat r c) (O : mat c t),
        (M - N) * O = (M * O) - (N * O).
    Proof.
      intros. rewrite mmul_madd_distr_r. rewrite mmul_mopp_l. auto.
    Qed.

0 * M = 0
    Lemma mmul_0_l : forall {r c t} (M : mat c t), mat0 * M = @Matrix.mat0 _ 0 r t.
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite !mnth_mmul, mnth_mat0.
      rewrite mrow_mat0. apply vdot_0_l.
    Qed.

M * 0 = 0
    Lemma mmul_0_r : forall {r c t} (M : mat r c), M * mat0 = @Matrix.mat0 _ 0 r t.
    Proof.
      intros. apply meq_iff_mnth; intros. rewrite !mnth_mmul, mnth_mat0.
      rewrite mcol_mat0. apply vdot_0_r.
    Qed.

1 * M = M
    Lemma mmul_1_l : forall {r c} (M : mat r c), mat1 * M = M.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold mmul,vdot,mat1,vmap2.
      apply vsum_unique with (i:=i); fin.
    Qed.

M * 1 = M
    Lemma mmul_1_r : forall {r c} (M : mat r c), M * mat1 = M.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold mmul,vdot,mat1,vmap2.
      apply vsum_unique with (i:=j); fin.
    Qed.

(a \.* M) * N = a \.* (M * N)
    Lemma mmul_mcmul_l : forall {r c s} (a : A) (M : mat r c) (N : mat c s),
        (a \.* M) * N = a \.* (M * N).
    Proof.
      intros. apply meq_iff_mnth; intros.
      repeat rewrite ?mnth_mmul, ?mnth_mcmul.
      rewrite vnth_mcmul. rewrite vdot_vcmul_l. auto.
    Qed.

M * (a \.* N) = a \.* (M * N)
    Lemma mmul_mcmul_r : forall {r c s} (a : A) (M : mat r c) (N : mat c s),
        M * (a \.* N) = a \.* (M * N).
    Proof.
      intros. apply meq_iff_mnth; intros.
      repeat rewrite ?mnth_mmul, ?mnth_mcmul.
      rewrite mcol_mcmul. rewrite vdot_vcmul_r. auto.
    Qed.

(M * N)\T = N\T * M\T
    Lemma mtrans_mmul : forall {r c s} (M : mat r c) (N : mat c s),
        (M * N)\T = N\T * M\T.
    Proof.
      intros. apply meq_iff_mnth; intros.
      rewrite !mnth_mtrans,!mnth_mmul. rewrite vdot_comm. f_equal.
    Qed.

tr (M * N) = tr (N * M)
    Lemma mtrace_mmul : forall {r c} (M : mat r c) (N : mat c r),
        tr (M * N) = tr (N * M).
    Proof.
      intros. unfold mtrace. unfold mmul,vdot,vmap2.
      rewrite vsum_vsum. apply vsum_eq; intros. apply vsum_eq; intros. ring.
    Qed.

    Lemma mtrace_cyclic4_NOPM :
      forall {r c s t} (M : mat r c) (N : mat c s) (O : mat s t) (P : mat t r),
        tr(M * N * O * P) = tr(N * O * P * M).
    Proof.
      intros. replace (M * N * O * P) with (M * (N * O * P)). apply mtrace_mmul.
      rewrite <- !mmul_assoc. auto.
    Qed.

    Lemma mtrace_cyclic4_OPMN :
      forall {r c s t} (M : mat r c) (N : mat c s) (O : mat s t) (P : mat t r),
        tr(M * N * O * P) = tr(O * P * M * N).
    Proof. intros. do 2 rewrite mtrace_cyclic4_NOPM. auto. Qed.

    Lemma mtrace_cyclic4_PMNO :
      forall {r c s t} (M : mat r c) (N : mat c s) (O : mat s t) (P : mat t r),
        tr(M * N * O * P) = tr(P * M * N * O).
    Proof. intros. do 3 rewrite mtrace_cyclic4_NOPM. auto. Qed.

    Lemma mtrace_cyclic3_NOM : forall {n} (M N O : smat n), tr(M * N * O) = tr(N * O * M).
    Proof.
      intros. rewrite <- mtrace_mtrans. rewrite mmul_assoc. rewrite mtrans_mmul.
      rewrite mtrace_mmul. rewrite <- mtrans_mmul. apply mtrace_mtrans.
    Qed.

    Lemma mtrace_cyclic3_OMN : forall {n} (M N O : smat n), tr(M * N * O) = tr(O * M * N).
    Proof.
      intros. rewrite <- mtrace_mtrans. rewrite mtrans_mmul. rewrite mtrace_mmul.
      rewrite <- mtrans_mmul. rewrite mtrace_mtrans. rewrite mmul_assoc. auto.
    Qed.

  End mmul.
  Infix "*" := mmul : mat_scope.

Matrix multiply vector (column matrix)

  Section mmulv.
    Notation vec := (@vec A).
    Notation vopp := (@vopp _ Aopp).
    Notation "- a" := (vopp a) : vec_scope.
    Notation "a - b" := ((a + -b)%V) : vec_scope.

    Definition mmulv {r c : nat} (M : mat r c) (a : vec c) : vec r :=
      fun i => <M.[i], a>.
    Infix "*v" := mmulv : mat_scope.

(M *v a)i = <row M i, a>
    Lemma vnth_mmulv : forall {r c} (M : mat r c) (a : vec c) i,
        (M *v a).[i] = <M.[i], a>.
    Proof. intros. auto. Qed.

(M * N) *v a = M *v (N *v a)
    Lemma mmulv_assoc : forall {m n r} (M : mat m n) (N : mat n r) (a : vec r),
        (M * N) *v a = M *v (N *v a).
    Proof. intros. unfold mmulv. apply veq_iff_vnth; intros. apply vdot_assoc. Qed.

M *v (a + b) = M *v a + M *v b
    Lemma mmulv_vadd : forall {r c} (M : mat r c) (a b : vec c),
        M *v (a + b)%V = (M *v a + M *v b)%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      rewrite vnth_vadd, !vnth_mmulv. unfold vdot. unfold vmap2.
      rewrite vsum_add. apply vsum_eq; intros. rewrite vnth_vadd. ring.
    Qed.

(M + N) *v a = M *v a + N *v a
    Lemma mmulv_madd : forall {r c} (M N : mat r c) (a : vec c),
        (M + N) *v a = (M *v a + N *v a)%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      rewrite !vnth_vadd, !vnth_mmulv, !vnth_madd. unfold vdot. unfold vmap2.
      rewrite vsum_add. apply vsum_eq; intros. rewrite vnth_vadd. ring.
    Qed.

(- M) *v a = - (M *v a)
    Lemma mmulv_mopp : forall {r c} (M : mat r c) (a : vec c),
        (- M) *v a = (- (M *v a))%V.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite ?vnth_vopp, ?vnth_mmulv.
      rewrite vnth_mopp. rewrite vdot_vopp_l. auto.
    Qed.

M *v (- a) = - (M *v a)
    Lemma mmulv_vopp : forall {r c} (M : mat r c) (a : vec c),
        M *v (- a)%V = (- (M *v a))%V.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite ?vnth_vopp, ?vnth_mmulv.
      rewrite vdot_vopp_r. auto.
    Qed.

M *v (a - b) = M *v a - M *v b
    Lemma mmulv_vsub : forall {r c} (M : mat r c) (a b : vec c),
        M *v (a - b)%V = (M *v a - M *v b)%V.
    Proof. intros. rewrite mmulv_vadd. rewrite mmulv_vopp. auto. Qed.

(M - N) *v a = M *v a - N *v a
    Lemma mmulv_msub : forall {r c} (M N : mat r c) (a : vec c),
        (M - N) *v a = (M *v a - N *v a)%V.
    Proof. intros. rewrite mmulv_madd. rewrite mmulv_mopp. auto. Qed.

0 *v a = 0
    Lemma mmulv_0_l : forall {r c} (a : vec c), (@mat0 r c) *v a = vzero.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite !vnth_mmulv, vnth_vzero.
      apply vdot_0_l.
    Qed.

M *v 0 = 0
    Lemma mmulv_0_r : forall {r c} (M : mat r c), M *v vzero = vzero.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite !vnth_mmulv, vnth_vzero.
      apply vdot_0_r.
    Qed.

1 *v a = a
    Lemma mmulv_1_l : forall {n} (a : vec n), mat1 *v a = a.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite vnth_mmulv.
      apply vsum_unique with (i:=i).
      - rewrite vnth_vmap2. rewrite mnth_mat1_same. ring.
      - intros. rewrite vnth_vmap2. rewrite mnth_mat1_diff; auto. ring.
    Qed.

(x .* M) *v a = x .* (M *v a)
    Lemma mmulv_mcmul : forall {r c} (x : A) (M : mat r c) (a : vec c),
        (x \.* M) *v a = (x \.* (M *v a))%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      repeat rewrite ?vnth_mmulv, ?vnth_vcmul, ?vnth_mcmul.
      rewrite vdot_vcmul_l. auto.
    Qed.

M *v (x .* v) = x .* (M *v a)
    Lemma mmulv_vcmul : forall {r c} (x : A) (M : mat r c) (a : vec c),
        M *v (x \.* a)%V = (x \.* (M *v a))%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      repeat rewrite ?vnth_mmulv, ?vnth_vcmul, ?vnth_mcmul.
      rewrite vdot_vcmul_r. auto.
    Qed.

<a, b> = (v2rv a *v b).1
    Lemma vdot_eq_mmulv : forall {n} (a b : vec n), <a, b> = (v2rv a *v b).1.
    Proof. intros. apply vsum_eq; intros; auto. Qed.

v2cv (M *v a) = M * v2cv a
    Lemma v2cv_mmulv : forall {r c} (M : mat r c) (a : vec c),
        v2cv (M *v a) = M * v2cv a.
    Proof. intros. auto. Qed.

v2rv (M * a) = (v2rv a) * M\T
    Lemma v2rv_mmulv : forall {r c} (M : mat r c) (a : vec c),
        v2rv (M *v a) = v2rv a * M\T.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold v2rv.
      rewrite vnth_mmulv. rewrite mnth_mmul. rewrite vdot_comm. auto.
    Qed.

  End mmulv.
  Infix "*v" := mmulv : mat_scope.


Vector (row matrix) multiply matrix

  Section mvmul.
    Notation vec := (@vec A).
    Notation vopp := (@vopp _ Aopp).
    Notation "- a" := (vopp a) : vec_scope.
    Notation "a - b" := ((a + -b)%V) : vec_scope.

    Definition mvmul {r c : nat} (a : vec r) (M : mat r c) : vec c :=
      fun i => <a, M&[i]>.
    Infix "v*" := mvmul : mat_scope.

(M v* a)i = <row M i, a>
    Lemma vnth_mvmul : forall {r c} (a : vec r) (M : mat r c) i,
        (a v* M).[i] = <a, M&[i]>.
    Proof. intros. auto. Qed.

a v* (M * N) = (a v* M) v* N
    Lemma mvmul_assoc : forall {r c s} (a : vec r) (M : mat r c) (N : mat c s),
        a v* (M * N) = (a v* M) v* N.
    Proof.
      intros. unfold mvmul. apply veq_iff_vnth; intros. rewrite vdot_assoc. auto.
    Qed.

(a + b) v* M = a v* M + b v* M
    Lemma mvmul_vadd : forall {r c} (a b : vec r) (M : mat r c),
        (a + b)%V v* M = (a v* M + b v* M)%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      rewrite !vnth_vadd, !vnth_mvmul.
      unfold vdot. unfold vmap2.
      rewrite vsum_add. apply vsum_eq; intros. rewrite vnth_vadd. ring.
    Qed.

a v* (M + N) = a v* M + N v* a
    Lemma mvmul_madd : forall {r c} (a : vec r) (M N : mat r c),
        a v* (M + N) = (a v* M + a v* N)%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      rewrite !vnth_vadd, !vnth_mvmul. unfold vdot. unfold vmap2.
      rewrite vsum_add. apply vsum_eq; intros.
      rewrite !vnth_mcol. rewrite mnth_madd. ring.
    Qed.

a v* (- M) = - (a v* M)
    Lemma mvmul_mopp : forall {r c} (a : vec r) (M : mat r c),
        a v* (- M) = (- (a v* M))%V.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite ?vnth_vopp, ?vnth_mvmul.
      rewrite mcol_mopp. rewrite <- vdot_vopp_r. auto.
    Qed.

(- a) v* M = - (a v* M)
    Lemma mvmul_vopp : forall {r c} (a : vec r) (M : mat r c),
        (- a)%V v* M = (- (a v* M))%V.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite ?vnth_vopp, ?vnth_mvmul.
      rewrite vdot_vopp_l. auto.
    Qed.

(a - b) v* M = a v* M - b v* M
    Lemma mvmul_vsub : forall {r c} (a b : vec r) (M : mat r c),
        (a - b)%V v* M = (a v* M - b v* M)%V.
    Proof. intros. rewrite mvmul_vadd. rewrite mvmul_vopp. auto. Qed.

a v* (M - N) = a v* M - a v* N
    Lemma mvmul_msub : forall {r c} (a : vec r) (M N : mat r c),
        a v* (M - N) = (a v* M - a v* N)%V.
    Proof. intros. rewrite mvmul_madd. rewrite mvmul_mopp. auto. Qed.

0 v* M = 0
    Lemma mvmul_0_l : forall {r c} (M : mat r c), vzero v* M = vzero.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite !vnth_mvmul, vnth_vzero.
      apply vdot_0_l.
    Qed.

a v* 0 = 0
    Lemma mvmul_0_r : forall {r c} (a : vec r), a v* (@mat0 r c) = vzero.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite !vnth_mvmul, vnth_vzero.
      apply vdot_0_r.
    Qed.

a v* mat1 = a
    Lemma mvmul_1_r : forall {n} (a : vec n), a v* mat1 = a.
    Proof.
      intros. apply veq_iff_vnth; intros. rewrite vnth_mvmul.
      unfold vdot. apply vsum_unique with (i:=i).
      - rewrite vnth_vmap2. rewrite vnth_mcol. rewrite mnth_mat1_same. ring.
      - intros. rewrite vnth_vmap2. rewrite vnth_mcol.
        rewrite mnth_mat1_diff; auto. ring.
    Qed.

a v* (x .* M) = x .* (a v* M)
    Lemma mvmul_mcmul : forall {r c} (a : vec r) (x : A) (M : mat r c),
        a v* (x \.* M) = (x \.* (a v* M))%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      repeat rewrite vnth_mvmul, !vnth_vcmul. rewrite vnth_mvmul.
      rewrite mcol_mcmul. rewrite vdot_vcmul_r. auto.
    Qed.

(x .* a) v* M = x .* (a v* M)
    Lemma mvmul_vcmul : forall {r c} (a : vec r) (x : A) (M : mat r c),
        (x \.* a)%V v* M = (x \.* (a v* M))%V.
    Proof.
      intros. apply veq_iff_vnth; intros.
      repeat rewrite ?vnth_mvmul, ?vnth_vcmul, ?vnth_mcmul.
      rewrite vdot_vcmul_l. auto.
    Qed.

<a, b> = (a v* v2cv b).1
    Lemma vdot_eq_mvmul : forall {n} (a b : vec n), <a, b> = (a v* v2cv b).1.
    Proof. intros. apply vsum_eq; intros; auto. Qed.

v2cv (a v* M) = v2rv a * M
    Lemma v2cv_mvmul : forall {r c} (a : vec r) (M : mat r c),
        v2cv (a v* M) = M\T * v2cv a.
    Proof.
      intros. apply meq_iff_mnth; intros. unfold v2cv.
      rewrite vnth_mvmul. rewrite mnth_mmul. rewrite vdot_comm. auto.
    Qed.

v2rv (a v* M) = (v2rv a) * M
    Lemma v2rv_mvmul : forall {r c} (a : vec r) (M : mat r c),
        v2rv (a v* M) = v2rv a * M.
    Proof. auto. Qed.

  End mvmul.
  Infix "v*" := mvmul : mat_scope.

Mixed properties about mmul, mmulv, mvmul

  Section mmul_mmulv_mvmul.

    Lemma mmul_mconsrT_mconscT_eq_mconscT :
      forall {r c s} (M1 : mat r c) (v1 : vec c) (M2 : mat c s) (v2 : vec c),
        mconsrT M1 v1 * mconscT M2 v2 =
          mconscT (mconsrT (M1 * M2) (v1 v* M2)) (vconsT (M1 *v v2) (<v1,v2>)).
    Proof.
      intros. apply meq_iff_mnth; intros.
      rewrite mnth_mmul, mnth_mconscT. unfold mconsrT.
      destruct (fin2nat i ??= r)%nat as [Ei|Ei], (fin2nat j ??= s)%nat as [Ej|Ej].
      - rewrite !vnth_vconsT_n; auto. rewrite mcol_mconscT_n; auto.
      - rewrite !(vnth_vconsT_n _ _ i); try erewrite !(vnth_vconsT_lt _ _ j); auto.
        rewrite vnth_mvmul. erewrite mcol_mconscT_lt; auto.
      - rewrite !(vnth_vconsT_n _ _ j); try erewrite !(vnth_vconsT_lt _ _ i); auto.
        rewrite vnth_mmulv. erewrite mcol_mconscT_n; auto.
      - erewrite !(vnth_vconsT_lt); auto.
        rewrite mnth_mmul. erewrite mcol_mconscT_lt. auto.
        Unshelve. all: pose proof (fin2nat_lt i); pose proof (fin2nat_lt j); fin.
    Qed.

    Lemma mmul_mconsrT_mconscT_eq_mconsrT :
      forall {r c s} (M1 : mat r c) (v1 : vec c) (M2 : mat c s) (v2 : vec c),
        mconsrT M1 v1 * mconscT M2 v2 =
          mconsrT (mconscT (M1 * M2) (M1 *v v2)) (vconsT (v1 v* M2) (<v1,v2>)).
    Proof.
      intros. rewrite mmul_mconsrT_mconscT_eq_mconscT.
      rewrite mconscT_mconsrT_vconsT. auto.
    Qed.

  End mmul_mmulv_mvmul.

Skew-symmetric matrix

  Section skew.

Given matrix is skew-symmetric matrices
    Definition skewP {n} (M : smat n) : Prop := - M = M\T.

  End skew.

  Context {ADec : Dec (@eq A)}.

Properties when equipped with `Dec`

  Section with_Dec.

(M <> 0 /\ N <> 0 /\ x .* M = N) -> x <> 0
    Lemma mcmul_eq_imply_not_x0 : forall {r c} (M N : mat r c) x,
        M <> mat0 -> N <> mat0 -> x \.* M = N -> x <> 0.
    Proof.
      intros. destruct (Aeqdec x 0); auto. exfalso. subst.
      rewrite mcmul_0_l in H0. easy.
    Qed.
  End with_Dec.


Properties below, need a field structure
  Context `{HField : Field A Aadd 0 Aopp Amul 1 Ainv}.


Properties when equipped with `Field`

  Section with_Field.

x * M = 0 -> (x = 0) \/ (M = 0)
    Lemma mcmul_eq0_imply_x0_or_m0 : forall {r c} (M : mat r c) x,
        x \.* M = mat0 -> (x = 0)%A \/ (M = mat0).
    Proof.
      intros. destruct (Aeqdec x 0); auto. right.
      apply meq_iff_mnth; intros. rewrite meq_iff_mnth in H. specialize (H i j).
      cbv in H. cbv. apply field_mul_eq0_iff in H. tauto.
    Qed.

(M <> 0 /\ x * M = 0) -> M = 0
    Lemma mcmul_mnonzero_eq0_imply_x0 : forall {r c} (M : mat r c) x,
        M <> mat0 -> x \.* M = mat0 -> (x = 0)%A.
    Proof. intros. apply mcmul_eq0_imply_x0_or_m0 in H0; auto. tauto. Qed.

x * M = M -> x = 1 \/ M = 0
    Lemma mcmul_same_imply_x1_or_m0 : forall {r c} x (M : mat r c),
        x \.* M = M -> (x = 1)%A \/ (M = mat0).
    Proof.
      intros. destruct (Aeqdec x 1); auto. right.
      apply meq_iff_mnth; intros. rewrite meq_iff_mnth in H. specialize (H i j).
      cbv in H. cbv. apply field_mul_eq_imply_a1_or_b0 in H; auto. tauto.
    Qed.
  End with_Field.

End malg.

Section test.
  Let M0 := @l2m _ 9 2 2 [].
  Let M := @l2m _ 9 2 2 [[1;2];[3;4]].
  Let N := @l2m _ 9 2 2 [[1];[3;4]].
  Let O := @l2m _ 9 2 2 [[1;2];[3]].
  Let M4 := @l2m _ 9 2 2 [[1;2;3];[3;4]].
  Let M5 := @l2m _ 9 2 2 [[1;2];[3;4;5]].
End test.

Elementary Row Transform


Section RowTrans.
  Context `{HARing : ARing}.
  Add Ring ring_inst : (make_ring_theory HARing).

  Notation "0" := Azero : A_scope.
  Notation "1" := Aone : A_scope.
  Infix "+" := Aadd : A_scope.
  Notation "- a" := (Aopp a) : A_scope.
  Notation "a - b" := (a + - b) : A_scope.
  Infix "*" := Amul : A_scope.
  Infix "+" := (@madd _ Aadd _ _) : mat_scope.
  Notation mat1 := (@mat1 _ 0 1).
  Infix "*" := (@mmul _ Aadd 0 Amul _ _ _) : mat_scope.

Matrix with one given element

An matrix which (x,y) element is a
  Definition matOneElem {n} (x y : 'I_n) (a : A) : smat A n :=
    fun i j => if i ??= x then (if j ??= y then a else 0) else 0.

Row scaling

Scalar multiply with c to x-th row of matrix M
  Definition mrowScale {n} (x : 'I_n) (c : A) (M : smat A n) : smat A n :=
    fun i j => if i ??= x then (c * M i j)%A else M i j.

行数乘矩阵 作用:E(x,c) * M 的结果是 M 的第 x 行乘以 c 倍 形式:第 (x,x) 的元素是 c, 其余是单位阵
  Definition mrowScaleM {n} (x : 'I_n) (c : A) : smat A n :=
    fun (i j : 'I_n) => if i ??= j then (if i ??= x then c else 1) else 0.

rowScale of `M` equal to left multiply rowScaleMat of `M`
  Lemma mrowScale_eq : forall {n} (x : 'I_n) (c : A) (M : smat A n),
      mrowScale x c M = (mrowScaleM x c) * M.
  Proof.
    intros. unfold mrowScale, mrowScaleM. apply meq_iff_mnth; intros.
    rewrite mnth_mmul. unfold vdot. fin.
    - apply fin2nat_eq_iff in E; rewrite E. symmetry.
      apply vsum_unique with (i := x); intros; rewrite vnth_vmap2; fin.
    - symmetry.
      apply vsum_unique with (i := i); intros; rewrite vnth_vmap2; fin.
      rewrite vnth_mcol. ring.
  Qed.

mrowScale i c (M * N) = mrowScale i c M * N
  Lemma mrowScale_mmul : forall {n} (M N : smat A n) (i : 'I_n) (c : A),
      mrowScale i c (M * N) = mrowScale i c M * N.
  Proof. intros. rewrite !mrowScale_eq. rewrite mmul_assoc; auto. Qed.

Row addition with scaling

行倍加:矩阵 M 的第 y 行的 c 倍加到第 x 行
  Definition mrowAdd {n} (x y : 'I_n) (c : A) (M : smat A n) : smat A n :=
    fun i j => if i ??= x then (M i j + c * M y j)%A else M i j.

行倍加矩阵 作用:E(x,y,c) * M 的结果是 M 的第 y 行的 c 倍加到第 x 行 形式:单位阵 + 第 (x,y) 的元素是 c
  Definition mrowAddM {n} (x y : 'I_n) (c : A) : smat A n :=
    mat1 + matOneElem x y c.

  Lemma mrowAdd_eq : forall {n} (x y : 'I_n) (c : A) (M : smat A n),
      mrowAdd x y c M = (mrowAddM x y c) * M.
  Proof.
    intros. unfold mrowAdd, mrowAddM, matOneElem. apply meq_iff_mnth; intros.
    rewrite mnth_mmul. symmetry. fin.
    - rewrite vnth_madd. rewrite vdot_vadd_l. f_equal.
      + apply fin2nat_eq_iff in E; rewrite E.
        apply vsum_unique with (i := x); intros; rewrite vnth_vmap2; fin.
        * rewrite vnth_mcol. rewrite mnth_mat1_same. ring.
        * rewrite vnth_mcol. rewrite mnth_mat1_diff; auto. ring.
      + apply vsum_unique with (i := y); intros; rewrite vnth_vmap2; fin.
    - rewrite vnth_madd. unfold vadd.
      apply vsum_unique with (i := i); intros; rewrite !vnth_vmap2; fin.
      + rewrite vnth_mcol. rewrite mnth_mat1_same. ring.
      + rewrite vnth_mcol. rewrite mnth_mat1_diff; auto. ring.
  Qed.

mrowAdd i j c (M * N) = mrowScale i j c M * N
  Lemma mrowAdd_mmul : forall {n} (M N : smat A n) (i j : 'I_n) (c : A),
      mrowAdd i j c (M * N) = mrowAdd i j c M * N.
  Proof. intros. rewrite !mrowAdd_eq. rewrite mmul_assoc; auto. Qed.

(i)+c(j)) * (i)+(-c)(j) = mat1
  Lemma mmul_mrowAddM_mrowAddM : forall {n} (i j : 'I_n) (c : A),
      i <> j -> mrowAddM i j c * mrowAddM i j (-c) = mat1.
  Proof.
    intros. rewrite <- mrowAdd_eq. unfold mrowAddM, mrowAdd.
    apply meq_iff_mnth; intros. rewrite !mnth_madd. unfold matOneElem. fin.
    - fin2nat. rewrite mnth_mat1_same. ring.
    - fin2nat. subst. rewrite (mnth_mat1_diff j j0); auto. ring.
  Qed.

Row swapping

行交换:矩阵 M 的第 x, y 两行互换
  Definition mrowSwap {n} (x y : 'I_n) (M : smat A n) : smat A n :=
    fun i j => if i ??= x then M y j else (if i ??= y then M x j else M i j).

行交换矩阵 作用:E(x,y) * M 的结果是 M 的第 x 行和第 y 行交换 形式:在x,y所在行时,(x,y) 和 (y,x) 是 1;其余行时是单位阵
  Definition mrowSwapM {n} (x y : 'I_n) : smat A n :=
    fun i j =>
      if i ??= x
      then (if j ??= y then 1 else 0)
      else (if i ??= y
            then (if j ??= x then 1 else 0)
            else (if i ??= j then 1 else 0)).

  Lemma mrowSwap_eq : forall {n} (x y : 'I_n) (M : smat A n),
      mrowSwap x y M = (mrowSwapM x y) * M.
  Proof.
    intros. unfold mrowSwap, mrowSwapM. apply meq_iff_mnth; intros.
    rewrite mnth_mmul. symmetry. fin.
    - apply vsum_unique with (i := y); intros; rewrite vnth_vmap2; fin.
      rewrite vnth_mcol. ring.
    - apply vsum_unique with (i := x); intros; rewrite vnth_vmap2; fin.
      rewrite vnth_mcol. ring.
    - apply vsum_unique with (i := i); intros; rewrite vnth_vmap2; fin.
      rewrite vnth_mcol. ring.
  Qed.

mrowSwap i j (M * N) = mrowSwap i j M * N
  Lemma mrowSwap_mmul : forall {n} (M N : smat A n) (i j : 'I_n),
      mrowSwap i j (M * N) = mrowSwap i j M * N.
  Proof. intros. rewrite !mrowSwap_eq. rewrite mmul_assoc; auto. Qed.

(i,j) * (i,j) = mat1
  Lemma mmul_mrowSwapM_mrowSwapM : forall {n} (i j : 'I_n),
      mrowSwapM i j * mrowSwapM i j = mat1.
  Proof.
    intros. rewrite <- mrowSwap_eq. unfold mrowSwapM, mrowSwap.
    apply meq_iff_mnth; intros. fin.
    - fin2nat. rewrite mnth_mat1_same; auto.
    - fin2nat. rewrite mnth_mat1_diff; auto.
    - fin2nat. rewrite mnth_mat1_same; auto.
    - fin2nat. rewrite mnth_mat1_diff; auto.
    - fin2nat. rewrite mnth_mat1_same; auto.
    - fin2nat. rewrite mnth_mat1_diff; auto.
  Qed.

  Section Field.
    Context `{HField : Field A Aadd 0 Aopp Amul 1}.
    Add Field field_inst : (make_field_theory HField).

    Notation "/ a" := (Ainv a) : A_scope.
    Notation "a / b" := (a * / b) : A_scope.

c(i) * (/c)(i) = mat1
    Lemma mmul_mrowScaleM_mrowScaleM : forall {n} (i : 'I_n) (c : A),
        c <> 0 -> mrowScaleM i c * mrowScaleM i (/c) = mat1.
    Proof.
      intros. rewrite <- mrowScale_eq. unfold mrowScaleM, mrowScale.
      apply meq_iff_mnth; intros. fin.
      - fin2nat. rewrite mnth_mat1_same; auto. field. auto.
      - fin2nat. rewrite mnth_mat1_diff; auto. field.
    Qed.
  End Field.

End RowTrans.

Section test.
  Import Reals.
  Open Scope R.

  Notation mrowScale := (mrowScale (Amul:=Rmult)).
  Notation mrowAdd := (mrowAdd (Aadd:=Rplus) (Amul:=Rmult)).

  Let M : smat R 2 := @l2m _ 0 2 2 ([[1;2];[3;4]]).

  Let i0 : 'I_2 := nat2finS 0.
  Let i1 : 'I_2 := nat2finS 1.

  Goal m2l (mrowScale i0 2 M) = [[2;4];[3;4]]. Proof. cbv. list_eq; ring. Qed.
  Goal m2l (mrowScale i1 2 M) = [[1;2];[6;8]]. Proof. cbv. list_eq; ring. Qed.
  Goal m2l (mrowSwap i0 i0 M) = m2l M. Proof. cbv. list_eq; ring. Qed.
  Goal m2l (mrowSwap i0 i1 M) = [[3;4];[1;2]]. Proof. cbv. list_eq; ring. Qed.
  Goal m2l (mrowAdd i1 i0 2 M) = [[1;2];[5;8]]. Proof. cbv. list_eq; ring. Qed.
  Goal m2l (mrowAdd i0 i1 2 M) = [[7;10];[3;4]]. Proof. cbv. list_eq; ring. Qed.
End test.

Test examples

Section test.
  Import Reals.
  Open Scope R.


  Infix "*" := Rmult.
  Infix "+" := Rplus.
  Notation mat r c := (mat R r c).
  Notation l2m := (l2m 0).
  Infix "+" := (madd (Aadd:=Rplus)) : mat_scope.
  Infix "*" := (mmul (Aadd:=Rplus) (Amul:=Rmult) (Azero:=R0)) : mat_scope.
  Infix "\.*" := (mcmul (Amul:=Rmult)) : mat_scope.

  Open Scope mat_scope.

Examples for numerical matrix

  Section proof_matrix_eq.
    Let M : mat 2 3 := l2m [[1;3;1];[1;0;0]].
    Let N : mat 2 3 := l2m [[0;0;5];[7;5;0]].
    Let O : mat 2 3 := l2m [[1;3;6];[8;5;0]].

There are many wasy to finish the proof

    Goal M + N = O.
    Proof. apply m2l_inj. cbv. list_eq; ring. Qed.

    Goal M + N = O.
    Proof.
      apply meq_iff_mnth; intros. rewrite mnth_madd. unfold M,N,O. destruct i,j.
      repeat (try destruct i; try destruct i0; try lia; try (cbn; ring)).
    Qed.

    Let M4 : mat 2 3 := l2m [[1; 8;-3];[4;-2; 5]].
    Let M5 : mat 2 3 := l2m [[2;16;-6];[8;-4;10]].
    Goal 2 \.* M4 = M5.
    Proof. apply m2l_inj. cbv. list_eq; ring. Qed.

    Let M6 : mat 2 3 := l2m [[1;2;3];[0;-6;7]].
    Let M7 : mat 3 2 := l2m [[1;0];[2;-6];[3;7]].
    Goal M6\T = M7.
    Proof. apply m2l_inj. cbv. list_eq; ring. Qed.
  End proof_matrix_eq.

Examples for symbol matrix

A equation in 3D coordinate transform
  Section Rbe.
    Variable θ ψ φ : R.
    Definition Rx (α : R) : mat 3 3 :=
      @mkmat_3_3 _ 0
        1 0 0
        0 (cos α) (sin α)
        0 (-sin α)%R (cos α).

    Definition Ry (β : R) : mat 3 3 :=
      @mkmat_3_3 _ 0
        (cos β) 0 (-sin β)%R
        0 1 0
        (sin β) 0 (cos β).

    Definition Rz (γ : R) : mat 3 3 :=
      @mkmat_3_3 _ 0
        (cos γ) (sin γ) 0
        (-sin γ) (cos γ) 0
        0 0 1.

    Definition R_b_e_direct : mat 3 3 :=
      (@mkmat_3_3 _ 0
         (cos θ * cos ψ)
         (cos ψ * sin θ * sin φ - sin ψ * cos φ)
         (cos ψ * sin θ * cos φ + sin φ * sin ψ)
         
         (cos θ * sin ψ)
         (sin ψ * sin θ * sin φ + cos ψ * cos φ)
         (sin ψ * sin θ * cos φ - cos ψ * sin φ)
         
         (-sin θ)
         (sin φ * cos θ)
         (cos φ * cos θ))%R.

    Opaque cos sin.

    Lemma Rx_Ry_Rz_eq_Rbe : (Rz ψ)\T * (Ry θ)\T * (Rx φ)\T = R_b_e_direct.
    Proof. apply m2l_inj. cbv. list_eq; ring. Qed.
  End Rbe.

End test.