FinMatrix.Matrix.MatrixGauss


Require Import NatExt.
Require Import Hierarchy.
Require Import Matrix.
Require Import MyExtrOCamlR.
Require QcExt RExt.

Generalizable Variable A Aadd Azero Aopp Amul Aone Ainv.

fold_left f (map g l) a = fold_left (fun x y => f x (g y)) l a
Lemma fold_left_map : forall {A B} (l : list B) (f : A -> A -> A) (g : B -> A) a,
    fold_left f (map g l) a = fold_left (fun x y => f x (g y)) l a.
Proof.
  intros A B l. induction l; intros; simpl. auto.
  rewrite IHl. auto.
Qed.

fold_right f a (map g l) = fold_right (fun x y => f (g x) y) a l
Lemma fold_right_map : forall {A B} (l : list B) (f : A -> A -> A) (g : B -> A) a,
    fold_right f a (map g l) = fold_right (fun x y => f (g x) y) a l.
Proof.
  intros A B l. induction l; intros; simpl. auto.
  rewrite IHl. auto.
Qed.

Gauss elimination.

Section GaussElim.
  Context `{HField : Field} `{HAeqDec : Dec _ (@eq A)}.
  Add Field field_inst : (make_field_theory HField).

  Notation "0" := Azero : A_scope.
  Notation "1" := Aone : A_scope.
  Infix "+" := Aadd : A_scope.
  Notation "- a" := (Aopp a) : A_scope.
  Infix "*" := Amul : A_scope.
  Notation "/ a" := (Ainv a) : A_scope.
  Infix "/" := (fun a b => a * / b) : A_scope.
  Notation Aeqb := (@Acmpb _ (@eq A) _).

  Notation mat r c := (mat A r c).
  Notation smat n := (smat A n).
  Notation mat1 := (@mat1 _ Azero Aone).
  Notation madd := (@madd _ Aadd).
  Infix "+" := madd : mat_scope.
  Notation mmul := (@mmul _ Aadd Azero Amul).
  Infix "*" := mmul : mat_scope.
  Notation mrowSwap := (@mrowSwap A).
  Notation mrowScale := (@mrowScale _ Amul).
  Notation mrowAdd := (@mrowAdd _ Aadd Amul).
  Notation mrowSwapM := (@mrowSwapM _ 0 1 _).
  Notation mrowScaleM := (@mrowScaleM _ 0 1 _).
  Notation mrowAddM := (@mrowAddM _ Aadd 0 1 _).
  Notation mrow := (@mrow _ Azero).

行变换


  Inductive RowOp {n} :=
  | ROnop
  | ROswap (i j : 'I_(S n))
  | ROscale (i : 'I_(S n)) (c : A)
  | ROadd (i j : 'I_(S n)) (c : A).

行变换列表转换为矩阵
  Definition rowOps2mat {n} (l : list (@RowOp n)) : smat (S n) :=
    fold_right (fun op M =>
                  match op with
                  | ROnop => M
                  | ROswap i j => mrowSwap i j M
                  | ROscale i c => mrowScale i c M
                  | ROadd i j c => mrowAdd i j c M
                  end) mat1 l.

rowOps2mat (l1 ++ l2) = rowOps2mat l1 * rowOps2mat l2
  Theorem rowOps2mat_app : forall {n} (l1 l2 : list (@RowOp n)),
      rowOps2mat (l1 ++ l2) = rowOps2mat l1 * rowOps2mat l2.
  Proof.
    intros. induction l1; intros; simpl.
    - rewrite mmul_1_l; auto.
    - destruct a; auto.
      + rewrite IHl1. rewrite mrowSwap_mmul; auto.
      + rewrite IHl1. rewrite mrowScale_mmul; auto.
      + rewrite IHl1. rewrite mrowAdd_mmul; auto.
  Qed.

行变换的逆过程

行变换列表转换为反作用的矩阵。即,rowOps2mat的逆矩阵
  Definition rowOps2matInv {n} (l : list (@RowOp n)) : smat (S n) :=
    fold_left (fun M op =>
                 match op with
                 | ROnop => M
                 | ROswap i j => mrowSwap i j M
                 | ROscale i c => mrowScale i (/c) M
                 | ROadd i j c => mrowAdd i j (-c) M
                 end) l mat1.

  Section helper.

    Definition roValid {n} (op : @RowOp n) : Prop :=
      match op with
      | ROnop => True
      | ROswap i j => True
      | ROscale i c => c <> 0
      | ROadd i j c => i <> j
      end.

    Definition ro2mat {n} (op : @RowOp n) : smat (S n) :=
      match op with
      | ROnop => mat1
      | ROswap i j => mrowSwapM i j
      | ROscale i c => mrowScaleM i c
      | ROadd i j c => mrowAddM i j c
      end.

    Definition ro2matInv {n} (op : @RowOp n) : smat (S n) :=
      match op with
      | ROnop => mat1
      | ROswap i j => mrowSwapM i j
      | ROscale i c => mrowScaleM i (/c)
      | ROadd i j c => mrowAddM i j (-c)
      end.

    Lemma mmul_ro2mat_l : forall n (op : RowOp) (M : smat (S n)),
        ro2mat op * M =
          match op with
          | ROnop => M
          | ROswap i j => mrowSwap i j M
          | ROscale i c => mrowScale i c M
          | ROadd i j c => mrowAdd i j c M
          end.
    Proof.
      intros. unfold ro2mat. destruct op.
      - apply mmul_1_l.
      - rewrite mrowSwap_eq; auto.
      - rewrite mrowScale_eq; auto.
      - rewrite mrowAdd_eq; auto.
    Qed.

    Lemma mmul_ro2matInv_l : forall n (op : RowOp) (M : smat (S n)),
        ro2matInv op * M =
          match op with
          | ROnop => M
          | ROswap i j => mrowSwap i j M
          | ROscale i c => mrowScale i (/ c) M
          | ROadd i j c => mrowAdd i j (- c) M
          end.
    Proof.
      intros. unfold ro2matInv. destruct op.
      - apply mmul_1_l.
      - rewrite mrowSwap_eq; auto.
      - rewrite mrowScale_eq; auto.
      - rewrite mrowAdd_eq; auto.
    Qed.

    Lemma mmul_ro2mat_ro2matInv : forall {n} (op : @RowOp n),
        roValid op -> ro2mat op * ro2matInv op = mat1.
    Proof.
      intros. hnf in H. destruct op; simpl.
      - rewrite mmul_1_l; auto.
      - rewrite mmul_mrowSwapM_mrowSwapM; auto.
      - rewrite mmul_mrowScaleM_mrowScaleM; auto.
      - rewrite mmul_mrowAddM_mrowAddM; auto.
    Qed.

    Lemma mmul_ro2matInv_ro2mat : forall {n} (op : @RowOp n),
        roValid op -> ro2matInv op * ro2mat op = mat1.
    Proof.
      intros. hnf in H. destruct op; simpl.
      - rewrite mmul_1_l; auto.
      - rewrite mmul_mrowSwapM_mrowSwapM; auto.
      - replace c with (/ / c) at 2.
        rewrite mmul_mrowScaleM_mrowScaleM; auto.
        apply field_inv_neq0_iff; auto.
        rewrite field_inv_inv; auto.
      - replace c with (- - c) at 2 by field.
        rewrite mmul_mrowAddM_mrowAddM; auto.
    Qed.

rowOps2mat has an equivalent form with matrix multiplication.
    Lemma rowOps2mat_eq : forall {n} (l : list (@RowOp n)),
        rowOps2mat l = fold_right mmul mat1 (map ro2mat l).
    Proof.
      intros. unfold rowOps2mat. rewrite fold_right_map. f_equal.
      extensionality M. extensionality op. rewrite mmul_ro2mat_l. auto.
    Qed.

rowOps2matInv has an equivalent form with matrix multiplication.
    Lemma rowOps2matInv_eq : forall {n} (l : list (@RowOp n)),
        rowOps2matInv l = fold_left (fun x y => y * x) (map ro2matInv l) mat1.
    Proof.
      intros. unfold rowOps2matInv. rewrite fold_left_map. f_equal.
      extensionality M. extensionality op. rewrite mmul_ro2matInv_l. auto.
    Qed.
  End helper.

rowOps2matInv l * rowOps2mat l = mat1
  Lemma mmul_rowOps2matInv_rowOps2mat_eq1 : forall {n} (l : list (@RowOp n)),
      Forall roValid l -> rowOps2matInv l * rowOps2mat l = mat1.
  Proof.
    intros.
    rewrite rowOps2mat_eq. rewrite rowOps2matInv_eq. rewrite <- fold_left_rev_right.
    induction l; simpl. apply mmul_1_l.
    replace (fold_right mmul mat1 (rev (map ro2matInv l) ++ [ro2matInv a]))
      with ((fold_right mmul mat1 (rev (map ro2matInv l))) * (ro2matInv a)).
    2: {
      
      remember (rev (map ro2matInv l)). remember (ro2matInv a).
      clear Heqv IHl Heql0.
      induction l0; simpl. rewrite mmul_1_l, mmul_1_r; auto.
      rewrite mmul_assoc. f_equal. rewrite IHl0. auto. }
    
    rewrite mmul_assoc. rewrite <- (mmul_assoc (ro2matInv a)).
    rewrite mmul_ro2matInv_ro2mat. rewrite mmul_1_l. apply IHl.
    inversion H; auto. inversion H; auto.
  Qed.

rowOps2mat l * rowOps2matInv l = mat1
  Lemma mmul_rowOps2mat_rowOps2matInv_eq1 : forall {n} (l : list (@RowOp n)),
      Forall roValid l -> rowOps2mat l * rowOps2matInv l = mat1.
  Proof.
    intros.
    rewrite rowOps2mat_eq. rewrite rowOps2matInv_eq. rewrite <- fold_left_rev_right.
    induction l; simpl. apply mmul_1_l.
    replace (fold_right mmul mat1 (rev (map ro2matInv l) ++ [ro2matInv a]))
      with ((fold_right mmul mat1 (rev (map ro2matInv l))) * (ro2matInv a)).
    2: {
      
      remember (rev (map ro2matInv l)). remember (ro2matInv a).
      clear Heqv IHl Heql0.
      induction l0; simpl. rewrite mmul_1_l, mmul_1_r; auto.
      rewrite mmul_assoc. f_equal. rewrite IHl0. auto. }
    
    rewrite <- !mmul_assoc. rewrite (mmul_assoc (ro2mat a)). rewrite IHl.
    rewrite mmul_1_r. rewrite mmul_ro2mat_ro2matInv. auto.
    inversion H; auto. inversion H; auto.
  Qed.

rowOps2mat l * M = N -> rowOps2matInv l * N = M
  Lemma rowOps2mat_imply_rowOps2matInv : forall {n} (l : list RowOp) (M N : smat (S n)),
      Forall roValid l -> (rowOps2mat l) * M = N -> (rowOps2matInv l) * N = M.
  Proof.
    intros. rewrite <- H0. rewrite <- mmul_assoc.
    rewrite mmul_rowOps2matInv_rowOps2mat_eq1; auto. rewrite mmul_1_l. auto.
  Qed.

rowOps2matInv l * M = N -> rowOps2mat l * N = M
  Lemma rowOps2matInv_imply_rowOps2mat : forall {n} (l : list RowOp) (M N : smat (S n)),
      Forall roValid l -> (rowOps2matInv l) * M = N -> (rowOps2mat l) * N = M.
  Proof.
    intros. rewrite <- H0. rewrite <- mmul_assoc.
    rewrite mmul_rowOps2mat_rowOps2matInv_eq1; auto. rewrite mmul_1_l. auto.
  Qed.

(l1 * l2 * ... * ln * 1) * a = l1 * l2 * ... * ln * (a * 1)
  Lemma fold_right_mmul_rebase : forall {n} (l : list (smat n)) (a : smat n),
      fold_right mmul mat1 l * a = fold_right mmul a l.
  Proof.
    intros n. induction l; intros; simpl. rewrite mmul_1_l; auto.
    rewrite mmul_assoc. rewrite IHl. auto.
  Qed.

rowOps2matInv (l1 ++ l2) = rowOps2matInv l2 * rowOps2matInv l1
  Theorem rowOps2matInv_app : forall {n} (l1 l2 : list (@RowOp n)),
      rowOps2matInv (l1 ++ l2) = rowOps2matInv l2 * rowOps2matInv l1.
  Proof.
    intros n. unfold rowOps2matInv.
    remember (fun (M : smat (S n)) (op : RowOp) =>
                match op with
                | ROnop => M
                | ROswap i j => mrowSwap i j M
                | ROscale i c => mrowScale i (/ c) M
                | ROadd i j c => mrowAdd i j (- c) M
                end) as f.
    intros l1 l2. revert l1. induction l2.
    - intros. simpl. rewrite app_nil_r. rewrite mmul_1_l; auto.
    - intros. simpl.
      replace (l1 ++ a :: l2)%list with ((l1 ++ [a]) ++ l2)%list;
        [|rewrite <- app_assoc; auto].
      rewrite IHl2. rewrite fold_left_app; simpl.
      replace (f (fold_left f l1 mat1) a)
        with (ro2matInv a * (fold_left f l1 mat1)).
      2:{ rewrite mmul_ro2matInv_l. rewrite Heqf; auto. }
      replace (fold_left f l2 (f mat1 a))
        with ((fold_left f l2 mat1) * ro2matInv a).
      2:{
        
        clear IHl2. rename l2 into l. clear l1.
        assert (f = fun (M : smat (S n)) op => ro2matInv op * M).
        { rewrite Heqf. unfold ro2matInv.
          extensionality M. extensionality op. destruct op.
          rewrite mmul_1_l; auto.
          rewrite mrowSwap_eq; auto.
          rewrite mrowScale_eq; auto.
          rewrite mrowAdd_eq; auto. }
        
        rewrite H.
        rewrite <- (fold_left_map l (fun x y => y * x) ro2matInv).
        rewrite <- (fold_left_map l (fun x y => y * x) ro2matInv).
        rewrite <- fold_left_rev_right.
        rewrite <- fold_left_rev_right.
        remember (rev (map ro2matInv l)) as L.
        rewrite mmul_1_r.
        remember (ro2matInv a) as b.
        rewrite fold_right_mmul_rebase. auto. }
      rewrite mmul_assoc. auto.
  Qed.

矩阵形状的谓词

方阵 M 的前 x 列的左下角(不含对角线)是 0。当 x = n 时,整个矩阵左下角是 0
  Definition mLeftLowerZeros {n} (M : smat n) (x : nat) : Prop :=
    forall (i j : 'I_n), j < x -> j < i -> M.[i].[j] = 0.

  Lemma mLeftLowerZeros_less : forall {n} (M : smat (S n)) (x : nat),
      mLeftLowerZeros M (S x) -> mLeftLowerZeros M x.
  Proof. intros. hnf in *; intros. rewrite H; auto. Qed.

  Lemma mLeftLowerZeros_S : forall {n} (M : smat (S n)) (x : nat),
      (forall (i : 'I_(S n)), x < i -> M i #x = 0) ->
      mLeftLowerZeros M x -> mLeftLowerZeros M (S x).
  Proof.
    intros. hnf in *; intros. destruct (x ??= j).
    - assert (j = #x). rewrite e. rewrite nat2finS_fin2nat; auto.
      rewrite H3. rewrite H; auto. lia.
    - rewrite H0; auto. lia.
  Qed.


方阵 M 是上三角矩阵(即,左下角都是0)
  Definition mUpperTrig {n} (M : smat n) : Prop :=
    mLeftLowerZeros M n.

  Lemma mat1_mLeftLowerZeros : forall {n}, mLeftLowerZeros (@mat1 n) n.
  Proof.
    intros. hnf. intros. rewrite mnth_mat1_diff; auto.
    assert (fin2nat i <> j); try lia. fin.
  Qed.

  Lemma mat1_mUpperTrig : forall {n}, mUpperTrig (@mat1 n).
  Proof. intros. unfold mUpperTrig. apply mat1_mLeftLowerZeros. Qed.


方阵 M 的前 x 行/列的对角线都是 1。当 x=n 时,整个矩阵的对角线是 1
  Definition mDiagonalOne {n} (M : smat n) (x : nat) : Prop :=
    forall (i : 'I_n), i < x -> M i i = 1.

  Lemma mat1_mDiagonalOne : forall {n}, mDiagonalOne (@mat1 n) n.
  Proof. intros. hnf; intros. rewrite mnth_mat1_same; auto. Qed.


方阵 M 的对角线都是 1
  Definition mDiagonalOnes {n} (M : smat n) : Prop := mDiagonalOne M n.

  Lemma mat1_mDiagonalOnes : forall {n}, mDiagonalOnes (@mat1 n).
  Proof. intros. unfold mDiagonalOnes. apply mat1_mDiagonalOne. Qed.


方阵 M 是单位上三角矩阵(即,左下角全0 + 对角线全1)
  Definition mUnitUpperTrig {n} (M : smat n) :=
    mUpperTrig M /\ mDiagonalOnes M.

单位上三角矩阵,任意下面的行的倍数加到上面,仍然是单位上三角矩阵
  Lemma mrowAdd_mUnitUpperTrig : forall {n} (M : smat (S n)) (i j : 'I_(S n)),
      mUnitUpperTrig M ->
      i < j ->
      mUnitUpperTrig (mrowAdd i j (- (M i j))%A M).
  Proof.
    intros. unfold mUnitUpperTrig in *. destruct H. split; hnf in *; intros.
    - unfold mrowAdd; fin. subst.
      rewrite !(H _ j0); auto. ring.
      pose proof (fin2nat_lt j). lia.
    - unfold mrowAdd; fin. fin2nat.
      rewrite H1; auto; fin. rewrite (H _ i); auto. ring.
  Qed.


方阵 M 的后 x 列的右上角(不含对角线)全是 0。 当 x = n 时,整个矩阵右上角是 0
  Definition mRightUpperZeros {n} (M : smat n) (x : nat) : Prop :=
    forall (i j : 'I_n), n - x <= j -> i < j -> M i j = 0.

  Lemma mat1_mRightUpperZeros : forall {n}, mRightUpperZeros (@mat1 n) n.
  Proof.
    intros. hnf. intros. rewrite mnth_mat1_diff; auto.
    assert (fin2nat i <> j); try lia. fin.
  Qed.

某列的第一个非零元的行号

第 j 列的后 x 个元素中的第 1 个非零元的行号。 eg: 当 x 是`维数` 时,则从第 0 行开始往下查找。
  Fixpoint getPivot {n} (M : smat (S n)) (x : nat) (j : 'I_(S n))
    : option ('I_(S n)) :=
    match x with
    | O => None
    | S x' =>
        
        if Aeqdec (M #(S n - x) j) 0
        then getPivot M x' j
        else Some #(S n - x)
    end.

  Lemma getPivot_imply_nonzero :
    forall (x : nat) {n} (M : smat (S n)) (i j : 'I_(S n)),
      getPivot M x j = Some i -> M i j <> 0.
  Proof.
    induction x; intros.
    - simpl in H. easy.
    - simpl in H. destruct (Aeqdec (M #(n - x) j) 0).
      + apply IHx in H; auto.
      + inv H. auto.
  Qed.

  Lemma getPivot_max : forall (x : nat) {n} (M : smat (S n)) (j r : 'I_(S n)),
      getPivot M x j = Some r -> r < S n.
  Proof.
    induction x; intros.
    - simpl in H. easy.
    - simpl in H. destruct Aeqdec as [E|E].
      + apply IHx in H. auto.
      + inversion H. rewrite fin2nat_nat2finS; lia.
  Qed.

  Lemma getPivot_min: forall (x : nat) {n} (M : smat (S n)) (j r : 'I_(S n)),
      getPivot M x j = Some r -> r >= S n - x.
  Proof.
    induction x; intros.
    - simpl in H. easy.
    - simpl in H. destruct Aeqdec as [E|E].
      + apply IHx in H. lia.
      + inversion H. rewrite fin2nat_nat2finS; lia.
  Qed.


向下消元


  Fixpoint elimDown {n} (M : smat (S n)) (x : nat) (j : 'I_(S n))
    : list RowOp * smat (S n) :=
    match x with
    | O => ([], M)
    | S x' =>
        
        let fx : 'I_(S n) := #(S n - x) in
        let a : A := M.[fx].[j] in
        
        if Aeqdec a 0
        then elimDown M x' j
        else
          let op1 := ROadd fx j (-a)%A in
          let M1 := mrowAdd fx j (-a)%A M in
          let (l2, M2) := elimDown M1 x' j in
          ((l2 ++ [op1])%list, M2)
    end.

对 M 向下消元得到 (l, M'),则 l 都是有效的
  Lemma elimDown_rowOpValid :
    forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
      x < S n - j -> elimDown M x j = (l, M') -> Forall roValid l.
  Proof.
    induction x; intros; simpl in *.
    - inversion H0. constructor.
    -
      destruct (Aeqdec (M #(n - x) j) 0) as [E|E].
      + apply IHx in H0; auto. lia.
      + destruct elimDown as [l2 M2] eqn: T2.
        apply IHx in T2; try lia. inversion H0.
        apply Forall_app. split; auto. repeat constructor. hnf. intro.
        destruct j.
        assert (n - x = i).
        { erewrite nat2finS_eq in H1. apply fin_eq_iff in H1. auto. }
        fin. subst. destruct (n - x) eqn:H2. fin. fin.
        Unshelve. fin.
  Qed.

对 M 向下消元得到 (l, M'),则 l * M = M'
  Lemma elimDown_eq :
    forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
      elimDown M x j = (l, M') -> rowOps2mat l * M = M'.
  Proof.
    induction x; intros; simpl in *.
    - inversion H. simpl. apply mmul_1_l.
    -
      destruct (Aeqdec (M #(n - x) j) 0) as [E|E].
      + apply IHx in H; auto.
      + destruct elimDown as [l2 M2] eqn: T2.
        apply IHx in T2. inversion H. rewrite <- H2, <- T2.
        rewrite rowOps2mat_app. simpl.
        rewrite !mmul_assoc. f_equal.
        rewrite <- mrowAdd_mmul. rewrite mmul_1_l. auto.
  Qed.

  Lemma elimDown_keep_former_row :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
      elimDown M x y = (l, M') ->
      M y y = 1 ->
      x < S n - y ->
      (forall i j : 'I_(S n), i < S n - x -> M' i j = M i j).
  Proof.
    induction x; intros.
    - simpl in H. inv H. auto.
    - simpl in H.
      destruct Aeqdec as [E|E].
      + apply IHx with (i:=i)(j:=j) in H; auto; try lia.
      + destruct elimDown as [l2 M2] eqn: T2.
        inversion H. rewrite <- H5. apply IHx with (i:=i)(j:=j) in T2; try lia.
        * rewrite T2. unfold mrowAdd; fin.
        * unfold mrowAdd; fin.
  Qed.

  Lemma elimDown_latter_row_0:
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
      elimDown M x y = (l, M') ->
      M y y = 1 ->
      x < S n - y ->
      (forall i : 'I_(S n), S n - x <= i -> M' i y = 0).
  Proof.
    induction x; intros.
    - pose proof (fin2nat_lt i). lia.
    - simpl in H.
      destruct (Aeqdec (M #(n - x) y) 0) as [E|E].
      + destruct (i ??= n - x) as [E1|E1].
        * apply elimDown_keep_former_row with (i:=i)(j:=y) in H; auto; try lia.
          subst. rewrite H. rewrite <- E1 in E. rewrite nat2finS_fin2nat in E; auto.
        * apply IHx with (i:=i) in H; auto; try lia.
      + destruct elimDown as [l2 M2] eqn: T2.
        inversion H. rewrite <- H5.
        replace (S n - S x) with (n - x) in H2 by lia.
        destruct (i ??= n - x) as [E1|E1].
        * apply elimDown_keep_former_row with (i:=i)(j:=y) in T2; auto; try lia.
          ** rewrite T2. unfold mrowAdd; fin. rewrite H0. rewrite <- E0. fin.
          ** unfold mrowAdd; fin.
        * apply IHx with (i:=i) in T2; auto; try lia. unfold mrowAdd; fin.
  Qed.

  Lemma elimDown_mLowerLeftZeros_aux:
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
      elimDown M x y = (l, M') ->
      mLeftLowerZeros M (y) ->
      x < S n - y ->
      M y y = 1 ->
      mLeftLowerZeros M' (y).
  Proof.
    induction x; intros.
    - simpl in H. inv H. auto.
    - simpl in H.
      destruct (Aeqdec (M #(n - x) y) 0) as [E|E].
      + apply IHx in H; auto; try lia.
      + destruct elimDown as [l2 M2] eqn: T2.
        inversion H. rewrite <- H5.
        hnf; intros.
        destruct (x ??< S n - y) as [E1|E1].
        * apply IHx in T2; auto; try lia; clear IHx.
          ** hnf; intros. unfold mrowAdd; fin.
             rewrite !(H0 _ j0); auto. ring.
          ** unfold mrowAdd; fin.
        * apply elimDown_keep_former_row with (i:=i)(j:=j) in T2; auto; try lia.
  Qed.

若 M 前 x 列左下是0,则对 M 的后 S n - S x 列消元后的 M' 的前 S x 列左下是 0
  Lemma elimDown_mLeftLowerZeros :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      elimDown M (S n - S x) #x = (l, M') ->
      x < S n ->
      M #x #x = 1 ->
      mLeftLowerZeros M x ->
      mLeftLowerZeros M' (S x).
  Proof.
    intros. hnf; intros.
    destruct (j ??= x) as [E|E].
    - apply elimDown_latter_row_0 with (i:=i) in H; auto; subst; fin.
    - apply elimDown_mLowerLeftZeros_aux in H; auto; fin.
      rewrite H; auto.
      pose proof (fin2nat_lt j). lia.
  Qed.



化为行阶梯形


  Fixpoint toREF {n} (M : smat (S n)) (x : nat)
    : option (list RowOp * smat (S n)) :=
    match x with
    | O => Some ([], M)
    | S x' =>
        let j : 'I_(S n) := #(S n - x) in
        
        match getPivot M x j with
        | None => None
        | Some i =>
            
            let (op1, M1) :=
              (if i ??= j
               then (ROnop, M)
               else (ROswap j i, mrowSwap j i M)) in
            
            let (op2, M2) :=
              (let c : A := M1.[j].[j] in
               (ROscale j (/c), mrowScale j (/c) M1)) in
            
            let (l3, M3) := elimDown M2 x' j in
            
            match toREF M3 x' with
            | None => None
            | Some (l4, M4) => Some ((l4 ++ l3 ++ [op2; op1])%list, M4)
            end
        end
    end.

对 M 行变换得到 (l, M'),则 l * M = M'
  Lemma toREF_eq : forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M x = Some (l, M') -> rowOps2mat l * M = M'.
  Proof.
    induction x; intros.
    - simpl in H. inversion H. simpl. apply mmul_1_l.
    - unfold toREF in H; fold (@toREF (n)) in H.       destruct getPivot as [i|] eqn: Hi; try easy.
      replace (S n - S x) with (n - x) in * by lia.
      destruct (i ??= #(n - x)) as [E|E].
      +
        destruct elimDown as [l3 M3] eqn:T3.
        destruct toREF as [[l4 M4]|] eqn:T4; try easy.
        apply IHx in T4. inversion H. rewrite <- H2, <- T4.
        apply elimDown_eq in T3. rewrite <- T3.
        rewrite !rowOps2mat_app. simpl. rewrite !mmul_assoc. f_equal. f_equal.
        rewrite <- mrowScale_mmul. rewrite mmul_1_l. auto.
      +
        destruct elimDown as [l3 M3] eqn:T3.
        destruct (toREF M3 x) as [[l4 M4]|] eqn:T4; try easy.
        apply IHx in T4. inversion H. rewrite <- H2, <- T4.
        apply elimDown_eq in T3. rewrite <- T3.
        rewrite !rowOps2mat_app. simpl. rewrite !mmul_assoc. f_equal. f_equal.
        rewrite <- mrowScale_mmul. rewrite <- mrowSwap_mmul. rewrite mmul_1_l. auto.
  Qed.

M 的前 S n - x 列左下角是0,且将 M 的后 x 行变换上三角得到 (l, M'), 则 M' 的所有列的左下角是 0
  Lemma toREF_mLeftLowerZeros :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M x = Some (l, M') ->
      x <= S n ->
      mLeftLowerZeros M (S n - x) ->
      mLeftLowerZeros M' (S n).
  Proof.
    induction x; intros.
    - simpl in *. inv H. auto.
    - unfold toREF in H; fold (@toREF n) in H.
      replace (S n - S x) with (n - x) in * by lia.
      destruct getPivot as [i|] eqn : Hi; try easy.
      destruct (i ??= #(n - x)) as [E|E].
      + destruct elimDown as [l3 M3] eqn:T3.
        destruct toREF as [[l4 M4]|] eqn:T4; try easy.
        inv H. apply IHx in T4; auto; try lia; clear IHx.
        replace x with (S n - (S (n - x))) in T3 at 4 by lia.
        apply elimDown_mLeftLowerZeros in T3; try lia.
        * replace (S (n - x)) with (S n - x) in T3 by lia; auto.
        * unfold mrowScale; fin.
          rewrite field_mulInvL; auto.
          apply getPivot_imply_nonzero in Hi. rewrite <- E in *. fin.
        * hnf; intros. unfold mrowScale; fin. rewrite (H1 _ j); fin.
      + destruct elimDown as [l3 M3] eqn:T3.
        destruct toREF as [[l4 M4]|] eqn:T4; try easy.
        inv H. apply IHx in T4; auto; try lia; clear IHx.
        replace x with (S n - (S (n - x))) in T3 at 6 by lia.
        apply elimDown_mLeftLowerZeros in T3; try lia.
        * replace (S (n - x)) with (S n - x) in T3 by lia; auto.
        * unfold mrowScale; fin.
          rewrite field_mulInvL; auto.
          unfold mrowSwap; fin. apply getPivot_imply_nonzero in Hi. auto.
        * hnf; intros. unfold mrowScale, mrowSwap; fin.
          ** rewrite (H1 _ j); fin. apply getPivot_min in Hi. lia.
          ** rewrite (H1 _ j); fin.
  Qed.

化行阶梯矩阵得到了上三角矩阵
  Lemma toREF_mUpperTrig : forall {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M (S n) = Some (l, M') -> mUpperTrig M'.
  Proof.
    intros. apply toREF_mLeftLowerZeros in H; auto.
    hnf; intros. lia.
  Qed.

M 的前 S n - x 个对角线元素是1,且将 M 的后 x 行变换上三角得到 (l, M'), 则 M' 的所有对角线都是1
  Lemma toREF_mDiagonalOne :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M x = Some (l, M') ->
      mDiagonalOne M (S n - x) ->
      x <= S n ->
      mDiagonalOne M' (S n).
  Proof.
    induction x; intros.
    - simpl in *. inv H. auto.
    -
      unfold toREF in H; fold (@toREF n) in H.
      destruct getPivot as [i|] eqn: Hi; try easy.
      replace (S n - S x) with (n - x) in * by lia.
      destruct (i ??= #(n - x)) as [E|E].
      + destruct elimDown as [l3 M3] eqn:T3.
        destruct toREF as [[l4 M4]|] eqn:T4; try easy.
        apply IHx in T4; clear IHx; try lia.
        * inversion H; clear H. rewrite <- H4. auto.
        * hnf; intros.
          apply elimDown_keep_former_row with (i:=i0)(j:=i0) in T3; fin.
          ** rewrite T3. unfold mrowScale; fin.
             *** rewrite <- E0. fin. rewrite field_mulInvL; auto.
                 rewrite <- E0 in *. fin.
                 apply getPivot_imply_nonzero in Hi; auto.
                 fin2nat. auto.
             *** rewrite H0; auto. lia.
          ** unfold mrowScale; fin. rewrite field_mulInvL; auto.
             apply getPivot_imply_nonzero in Hi. rewrite <- E in *. fin.
      + destruct elimDown as [l3 M3] eqn:T3.
        destruct toREF as [[l4 M4]|] eqn:T4; try easy.
        apply IHx in T4; clear IHx; try lia.
        * inversion H; clear H. rewrite <- H4. auto.
        * hnf; intros.
          apply elimDown_keep_former_row with (i:=i0)(j:=i0) in T3; fin.
          ** rewrite T3. unfold mrowScale, mrowSwap; fin.
             *** rewrite <- E0. fin. rewrite field_mulInvL; auto.
                 apply getPivot_imply_nonzero in Hi.
                 rewrite <- E0 in *. fin.
             *** subst.
                 pose proof (getPivot_max _ _ _ _ Hi).
                 pose proof (getPivot_min _ _ _ _ Hi). lia.
             *** assert (i0 < n - x). lia.
                 rewrite H0; auto.
          ** unfold mrowScale, mrowSwap; fin.
             rewrite field_mulInvL; auto.
             apply getPivot_imply_nonzero in Hi. auto.
  Qed.

化行阶梯矩阵得到的矩阵的对角线都是 1
  Lemma toREF_mDiagonalOnes : forall {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M (S n) = Some (l, M') -> mDiagonalOnes M'.
  Proof.
    intros. unfold mDiagonalOnes. apply toREF_mDiagonalOne in H; auto.
    hnf; lia.
  Qed.

对 M 行变换得到 (l, M'),则 l 都是有效的
  Lemma toREF_rowOpValid :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      x <= S n -> toREF M x = Some (l, M') -> Forall roValid l.
  Proof.
    induction x; intros.
    - simpl in H0. inversion H0. constructor.
    - unfold toREF in H0; fold (@toREF (n)) in H0.
      destruct getPivot as [i|] eqn: Hi; try easy.
      replace (S n - S x) with (n - x) in * by lia.
      destruct (i ??= #(n - x)) as [E|E].
      +
        destruct elimDown as [l3 M3] eqn:T3.
        destruct toREF as [[l4 M4]|] eqn:T4; try easy. inversion H0.
        apply IHx in T4 as T4'.
        apply elimDown_rowOpValid in T3.
        apply Forall_app. split; auto.
        apply Forall_app. split; auto.
        repeat constructor. unfold roValid.
        apply field_inv_neq0_iff.
        apply getPivot_imply_nonzero in Hi. fin2nat. auto. fin. fin.
      +
        destruct elimDown as [l3 M3] eqn:T3.
        destruct (toREF M3 x) as [[l4 M4]|] eqn:T4; try easy.
        apply IHx in T4 as T4'. inversion H0.
        apply elimDown_rowOpValid in T3.
        apply Forall_app. split; auto.
        apply Forall_app. split; auto.
        repeat constructor. unfold roValid.
        apply field_inv_neq0_iff. unfold mrowSwap. fin.
        apply getPivot_imply_nonzero in Hi. auto. fin. fin.
  Qed.

对 M 行变换得到 (l, M'),则 l' * M' = M
  Lemma toREF_eq_inv : forall {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M (S n) = Some (l, M') -> rowOps2matInv l * M' = M.
  Proof.
    intros. apply toREF_eq in H as H'. rewrite <- H'.
    rewrite <- mmul_assoc. rewrite mmul_rowOps2matInv_rowOps2mat_eq1.
    rewrite mmul_1_l; auto.
    apply toREF_rowOpValid in H. auto. lia.
  Qed.

化行阶梯矩阵得到的矩阵是单位上三角矩阵
  Lemma toREF_mUnitUpperTrig : forall {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M (S n) = Some (l, M') -> mUnitUpperTrig M'.
  Proof.
    intros. hnf. split.
    apply toREF_mUpperTrig in H; auto.
    apply toREF_mDiagonalOnes in H; auto.
  Qed.

化行阶梯形满足乘法不变式,并且结果矩阵是规范的上三角矩阵
  Theorem toREF_spec :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toREF M (S n) = Some (l, M') ->
      (rowOps2mat l * M = M') /\ mUnitUpperTrig M'.
  Proof.
    intros. split.
    apply toREF_eq in H; auto.
    apply toREF_mUnitUpperTrig in H; auto.
  Qed.







向上消元


  Fixpoint elimUp {n} (M : smat (S n)) (x : nat) (j : 'I_(S n))
    : list RowOp * smat (S n) :=
    match x with
    | O => ([], M)
    | S x' =>
        let fx : 'I_(S n) := #x' in
        let a : A := (M.[fx].[j]) in
        
        if Aeqdec a 0
        then elimUp M x' j
        else
          let (op1, M1) := (ROadd fx j (-a)%A, mrowAdd fx j (-a)%A M) in
          let (l2, M2) := elimUp M1 x' j in
          ((l2 ++ [op1])%list, M2)
    end.

对 M 向上消元得到 (l, M'),则 l * M = M'
  Lemma elimUp_eq :
    forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
      elimUp M x j = (l, M') -> rowOps2mat l * M = M'.
  Proof.
    induction x; intros; simpl in *.
    - inversion H. simpl. apply mmul_1_l.
    -
      destruct (Aeqdec (M #x j) 0) as [E|E].
      + apply IHx in H; auto.
      + destruct elimUp as [l2 M2] eqn:T2.
        apply IHx in T2. inv H.
        rewrite rowOps2mat_app. simpl.
        rewrite !mmul_assoc. f_equal.
        rewrite <- mrowAdd_mmul. rewrite mmul_1_l. auto.
  Qed.

对 M 向上消元得到 (l, M'),则 l 都是有效的
  Lemma elimUp_rowOpValid :
    forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
      x <= j ->
      elimUp M x j = (l, M') -> Forall roValid l.
  Proof.
    induction x; intros; simpl in *.
    - inversion H0. constructor.
    -
      destruct (Aeqdec (M #x j) 0) as [E|E].
      + apply IHx in H0; auto. fin.
      + destruct elimUp as [l2 M2] eqn:T2.
        apply IHx in T2; fin. inv H0.
        apply Forall_app. split; auto. repeat constructor. hnf. intros.
        rewrite <- H0 in H.
        rewrite fin2nat_nat2finS in H; fin.
        pose proof (fin2nat_lt j). fin.
  Qed.

对 M 向上消元保持单位上三角矩阵
  Lemma elimUp_mUnitUpperTrig :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (j : 'I_(S n)),
      elimUp M x j = (l, M') ->
      x <= j ->
      mUnitUpperTrig M -> mUnitUpperTrig M'.
  Proof.
    induction x; intros.
    - simpl in H. inv H. auto.
    - simpl in H.
      destruct (Aeqdec (M #x j) 0) as [E|E].
      + apply IHx in H; auto; try lia.
      + destruct elimUp as [l2 M2] eqn: T2. inv H.
        apply IHx in T2; auto; try lia.
        apply mrowAdd_mUnitUpperTrig; auto. fin.
        pose proof (fin2nat_lt j). lia.
  Qed.

  Lemma elimUp_keep_lower_rows :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
      elimUp M x y = (l, M') ->
      x <= y ->
      (forall i j : 'I_(S n), x <= i -> M' i j = M i j).
  Proof.
    induction x; intros.
    - simpl in H. inv H. auto.
    - simpl in H.
      destruct (Aeqdec (M #x y) 0) as [E|E].
      + apply IHx with (i:=i)(j:=j) in H; auto; try lia.
      + destruct elimUp as [l2 M2] eqn: T2. inv H.
        apply IHx with (i:=i)(j:=j) in T2; auto; try lia.
        rewrite T2. unfold mrowAdd; fin.
        pose proof (fin2nat_lt y). lia.
  Qed.

  Lemma elimUp_upper_rows_0 :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
      elimUp M x y = (l, M') ->
      mUnitUpperTrig M ->
      x <= y ->
      (forall i : 'I_(S n), i < x -> M' i y = 0).
  Proof.
    induction x; intros; try lia.
    simpl in H. hnf in H0. destruct H0 as [H00 H01].
    destruct (Aeqdec (M #x y) 0) as [E|E].
    -
      destruct (x ??= i) as [E1|E1].
      + apply elimUp_keep_lower_rows with (i:=i)(j:=y) in H; try lia.
        rewrite H. subst. fin.
      + apply IHx with (i:=i) in H; auto; try lia. split; auto.
    - destruct elimUp as [l2 M2] eqn: T2. inv H.
      destruct (x ??= i) as [E1|E1].
      + rewrite E1 in *.
        apply elimUp_keep_lower_rows with (i:=i)(j:=y) in T2; try lia. rewrite T2.
        unfold mrowAdd; fin. rewrite H01; auto; try lia; fin.
      + apply IHx with (i:=i) in T2; auto; try lia.
        apply mrowAdd_mUnitUpperTrig; auto. split; auto.
        fin. pose proof (fin2nat_lt y). lia.
  Qed.

若 M 的后 L 列的右上角都是 0,则上消元后,M' 的后 L 列的右上角都是 0
  Lemma elimUp_mUpperRightZeros_aux :
    forall (x L : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
      elimUp M x y = (l, M') ->
      x <= y ->
      L < S n - y ->
      mUnitUpperTrig M ->
      mRightUpperZeros M L ->
      mRightUpperZeros M' L.
  Proof.
    induction x; intros; simpl in H. inv H; auto.
    simpl in H.
    destruct (Aeqdec (M #x y) 0) as [E|E].
    - hnf; intros.
      apply IHx with (L:=L) in H; auto; try lia.
    - destruct elimUp as [l2 M2] eqn: T2. inv H.
      hnf; intros.
      apply IHx with (L:=L) in T2; auto; try lia.
      + apply mrowAdd_mUnitUpperTrig; auto. fin.
      + hnf; intros. unfold mrowAdd; fin.
        rewrite !(H3 _ j0); try lia. ring.
  Qed.

若 M 的后 (S n - S y) 列的右上角都是 0,则上消元后,S n - y 列的右上角都是 0
  Lemma elimUp_mUpperRightZeros:
    forall {n} (M M' : smat (S n)) (l : list RowOp) (y : nat),
      elimUp M y #y = (l, M') ->
      y < S n ->
      mUnitUpperTrig M ->
      mRightUpperZeros M (S n - S y) ->
      mRightUpperZeros M' (S n - y).
  Proof.
    intros. hnf; intros.
    replace (S n - (S n - y)) with y in H3 by lia.
    destruct (j ??= y) as [E|E].
    - subst. apply elimUp_upper_rows_0 with (i:=i) in H; auto; fin.
    - apply elimUp_mUpperRightZeros_aux with (L:=S n - S y) in H; auto; fin.
      rewrite H; auto. lia.
  Qed.




最简行阶梯形矩阵


  Fixpoint toRREF {n} (M : smat (S n)) (x : nat) : list RowOp * smat (S n) :=
    match x with
    | O => ([], M)
    | S x' =>
        let fx : 'I_(S n) := #x' in
        let (l1, M1) := elimUp M x' fx in
        let (l2, M2) := toRREF M1 x' in
        ((l2 ++ l1)%list, M2)
    end.

对 M 最简行变换得到 (l, M'),则 l * M = M'
  Lemma toRREF_eq : forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toRREF M x = (l, M') -> rowOps2mat l * M = M'.
  Proof.
    induction x; intros; simpl in *.
    - inversion H. simpl. apply mmul_1_l.
    - destruct elimUp as [l1 M1] eqn : T1.
      destruct toRREF as [l2 M2] eqn : T2.
      apply IHx in T2. inv H.
      apply elimUp_eq in T1. rewrite <- T1.
      rewrite rowOps2mat_app. apply mmul_assoc.
  Qed.

  Lemma toRREF_mUnitUpperTrig :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toRREF M x = (l, M') ->
      x <= S n ->
      mUnitUpperTrig M ->
      mUnitUpperTrig M'.
  Proof.
    induction x; intros; simpl in H. inv H; auto.
    destruct elimUp as [l1 M1] eqn : T1.
    destruct toRREF as [l2 M2] eqn : T2. inv H.
    apply IHx in T2; auto; try lia.
    apply elimUp_mUnitUpperTrig in T1; auto. fin.
  Qed.

若 M 的 后 S n - x 列的右上角都是0,则对 M 最简行变换得到的 M' 的右上角都是0
  Lemma toRREF_mRightUpperZeros :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toRREF M x = (l, M') ->
      x <= S n ->
      mUnitUpperTrig M ->
      mRightUpperZeros M (S n - x) ->
      mRightUpperZeros M' (S n).
  Proof.
    induction x; intros; simpl in H. inv H; auto.
    destruct elimUp as [l1 M1] eqn : T1.
    destruct toRREF as [l2 M2] eqn : T2. inv H.
    apply IHx in T2; auto; try lia.
    - apply elimUp_mUnitUpperTrig in T1; auto. fin.
    - apply elimUp_mUpperRightZeros in T1; auto.
  Qed.

对 M 向下消元得到 (l, M'),则 l 都是有效的
  Lemma toRREF_rowOpValid :
    forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
      toRREF M x = (l, M') -> x <= S n -> Forall roValid l.
  Proof.
    induction x; intros; simpl in H. inv H; auto.
    destruct elimUp as [l1 M1] eqn : T1.
    destruct toRREF as [l2 M2] eqn : T2. inv H.
    apply IHx in T2; auto; try lia.
    apply elimUp_rowOpValid in T1 as T1'; fin.
    apply Forall_app. split; auto.
  Qed.

对 M 最简行变换得到 (l, M'),则 l' * M' = M
  Lemma toRREF_eq_inv : forall {n} (M M' : smat (S n)) (l : list RowOp),
      toRREF M (S n) = (l, M') -> rowOps2matInv l * M' = M.
  Proof.
    intros. apply toRREF_eq in H as H'. rewrite <- H'.
    rewrite <- mmul_assoc. rewrite mmul_rowOps2matInv_rowOps2mat_eq1.
    rewrite mmul_1_l; auto.
    apply toRREF_rowOpValid in H; fin.
  Qed.

对 M 最简行变换得到 (l, M'),则 M' 是单位阵
  Lemma toRREF_mat1 : forall {n} (M M' : smat (S n)) (l : list RowOp),
      toRREF M (S n) = (l, M') ->
      mUnitUpperTrig M -> M' = mat1.
  Proof.
    intros. apply meq_iff_mnth; intros.
    destruct (j ??< i).
    -
      rewrite mat1_mLeftLowerZeros; auto; fin.
      apply toRREF_mUnitUpperTrig in H; auto.
      hnf in H. destruct H. rewrite H; auto; fin.
    - destruct (j ??= i) as [E|E].
      +
        apply toRREF_mUnitUpperTrig in H; auto. fin2nat.
        rewrite mat1_mDiagonalOne; fin.
        hnf in H. destruct H. rewrite H1; auto; fin.
      +
        assert (i < j) by lia.
        rewrite mat1_mRightUpperZeros; auto; fin.
        apply toRREF_mRightUpperZeros in H; auto; fin.
        * rewrite H; auto; try lia.
        * hnf; intros. pose proof (fin2nat_lt j0). lia.
  Qed.

End GaussElim.

Section test.
  Import QcExt.
  Open Scope mat_scope.

  Notation smat n := (smat Qc n).
  Notation mat1 := (@mat1 _ 0 1).
  Notation mmul := (@mmul _ Qcplus 0 Qcmult).
  Infix "*" := mmul : mat_scope.
  Notation toREF := (@toREF _ Qcplus 0 Qcopp Qcmult Qcinv).
  Notation toRREF := (@toRREF _ Qcplus 0 Qcopp Qcmult).
  Notation elimUp := (@elimUp _ Qcplus 0 Qcopp Qcmult).
  Notation rowOps2mat := (@rowOps2mat _ Qcplus 0 Qcmult 1).
  Notation rowOps2matInv := (@rowOps2matInv _ Qcplus 0 Qcopp Qcmult 1 Qcinv).


  Ltac meq :=
    apply m2l_inj; cbv; list_eq; f_equal; apply proof_irrelevance.

  Let M0 : smat 3 := l2m 0 (Q2Qc_dlist [[0;-2;1];[3;0;-2];[-2;3;0]]%Q).
  Let N0 : smat 3 := l2m 0 (Q2Qc_dlist [[6;3;4];[4;2;3];[9;4;6]]%Q).

  Goal M0 * N0 = mat1.
  Proof. meq. Qed.

  Goal N0 * M0 = mat1.
  Proof. meq. Qed.

  Let l1 := match toREF M0 3 with Some (l1,M1) => l1 | _ => [] end.
  Let T1 : smat 3 := rowOps2mat l1.
  Let M1 : smat 3 := match toREF M0 3 with Some (l1,M1) => M1 | _ => mat1 end.

  Let l2 := fst (toRREF M1 3).
  Let T2 : smat 3 := rowOps2mat l2.
  Let M2 : smat 3 := snd (toRREF M1 3).

  Goal M2 = mat1.
  Proof. meq. Qed.

  Goal T2 * T1 = N0.
  Proof. meq. Qed.


  Goal rowOps2matInv l1 * M1 = M0.
  Proof. meq. Qed.

  Goal rowOps2matInv l2 = M1.
  Proof. meq. Qed.

  Goal rowOps2matInv l1 * rowOps2matInv l2 = M0.
  Proof. meq. Qed.

  Goal rowOps2matInv (l2 ++ l1) = M0.
  Proof. meq. Qed.

End test.