FinMatrix.CoqExt.QcExt


Require Export QExt Qcanon.
Require Export Hierarchy.
Open Scope Qc.

Preliminary properties

  • a + a = 0
Lemma Qcplus_opp_l : forall a : Qc, - a + a = 0.
Proof. intros. rewrite Qcplus_comm. rewrite Qcplus_opp_r. auto. Qed.

~ (a < a)
Lemma Qclt_irrefl : forall a : Qc, ~ (a < a).
Proof. intros. intro. apply Qclt_not_eq in H. easy. Qed.

a <> b -> a <= b -> a < b
Lemma Qcle_lt_strong : forall a b : Qc, a <> b -> a <= b -> a < b.
Proof.
  intros.
  destruct (Qc_dec a b) as [[H1|H1]|H1]; auto.
  - apply Qcle_not_lt in H0. easy.
  - subst. easy.
Qed.

c + a = c + b -> a = b
Lemma Qcplus_reg_l : forall a b c : Qc, c + a = c + b -> a = b.
Proof.
  intros.
  assert (-c + c + a = -c + c + b). { rewrite !associative. rewrite H. auto. }
  rewrite Qcplus_opp_l in H0. rewrite !Qcplus_0_l in H0. auto.
Qed.

a + c = b + c -> a = b
Lemma Qcplus_reg_r : forall a b c : Qc, a + c = b + c -> a = b.
Proof.
  intros.
  assert (a + c + -c = b + c + -c). { rewrite H. auto. }
  rewrite !associative in H0. rewrite Qcplus_opp_r in H0.
  rewrite !Qcplus_0_r in H0. auto.
Qed.

b < c -> a + b < a + c
Lemma Qcplus_lt_compat_l : forall a b c : Qc, b < c -> a + b < a + c.
Proof.
  intros. destruct (Qc_eq_dec b c) as [H1|H1].
  - subst. apply Qclt_not_eq in H. easy.
  - pose proof (Qcplus_le_compat a a b c).
    assert (a <= a). apply Qcle_refl.
    assert (b <= c). apply Qclt_le_weak; auto.
    specialize (H0 H2 H3).
    apply Qcle_lt_or_eq in H0. destruct H0; auto.
    assert (-a + (a + b) = -a + (a + c)). rewrite H0; auto.
    rewrite <- !associative in H4. rewrite !Qcplus_opp_l,!Qcplus_0_l in H4. easy.
Qed.

a < b -> a + c < b + c
Lemma Qcplus_lt_compat_r : forall a b c : Qc, a < b -> a + c < b + c.
Proof. intros. rewrite !(Qcplus_comm _ c). apply Qcplus_lt_compat_l; auto. Qed.

a < b -> 0 < c -> c * a < c * b
Lemma Qcmult_lt_compat_l : forall a b c : Qc, a < b -> 0 < c -> c * a < c * b.
Proof. intros. rewrite !(commutative c _). apply Qcmult_lt_compat_r; auto. Qed.


Algebraic Structures

equality is equivalence relation: Equivalence eq
Hint Resolve eq_equivalence : Qc.

operations are well-defined. Eg: Proper (eq ==> eq ==> eq) Qcplus

Lemma Qcadd_wd : Proper (eq ==> eq ==> eq) Qcplus.
Proof. repeat (hnf; intros); subst; auto. Qed.

Lemma Qcopp_wd : Proper (eq ==> eq) Qcopp.
Proof. repeat (hnf; intros); subst; auto. Qed.

Lemma Qcsub_wd : Proper (eq ==> eq ==> eq) Qcminus.
Proof. repeat (hnf; intros); subst; auto. Qed.

Lemma Qcmul_wd : Proper (eq ==> eq ==> eq) Qcmult.
Proof. repeat (hnf; intros); subst; auto. Qed.

Lemma Qcinv_wd : Proper (eq ==> eq) Qcinv.
Proof. repeat (hnf; intros); subst; auto. Qed.

Lemma Qcdiv_wd : Proper (eq ==> eq ==> eq) Qcdiv.
Proof. repeat (hnf; intros); subst; auto. Qed.

Hint Resolve
  Qcadd_wd Qcopp_wd Qcsub_wd
  Qcmul_wd Qcinv_wd Qcdiv_wd : Qc.

Decidable

#[export] Instance Qc_eq_Dec : Dec (@eq Qc).
Proof. constructor. apply Qc_eq_dec. Defined.

#[export] Instance Qc_lt_Dec : Dec Qclt.
Proof.
  constructor. intros. destruct (Qclt_le_dec a b); auto.
  right. intro. apply Qcle_not_lt in q. easy.
Defined.

#[export] Instance Qc_le_Dec : Dec Qcle.
Proof.
  constructor. intros. destruct (Qclt_le_dec b a); auto.
  right. intro. apply Qcle_not_lt in H. easy.
Defined.

Associative

#[export] Instance Qcadd_Assoc : Associative Qcplus.
Proof. constructor; intros; field. Qed.

#[export] Instance Qcmul_Assoc : Associative Qcmult.
Proof. constructor; intros; field. Qed.

Hint Resolve Qcadd_Assoc Qcmul_Assoc : Qc.

Commutative

#[export] Instance Qcadd_Comm : Commutative Qcplus.
Proof. constructor; intros; field. Qed.

#[export] Instance Qcmul_Comm : Commutative Qcmult.
Proof. constructor; intros; field. Qed.

Hint Resolve Qcadd_Comm Qcmul_Comm : Qc.

Identity Left/Right

#[export] Instance Qcadd_IdL : IdentityLeft Qcplus 0.
Proof. constructor; intros; field. Qed.

#[export] Instance Qcadd_IdR : IdentityRight Qcplus 0.
Proof. constructor; intros; field. Qed.

#[export] Instance Qcmul_IdL : IdentityLeft Qcmult 1.
Proof. constructor; intros; field. Qed.

#[export] Instance Qcmul_IdR : IdentityRight Qcmult 1.
Proof. constructor; intros; field. Qed.

Hint Resolve
  Qcadd_IdL Qcadd_IdR
  Qcmul_IdL Qcmul_IdR : Qc.

Inverse Left/Right

#[export] Instance Qcadd_InvL : InverseLeft Qcplus 0 Qcopp.
Proof. constructor; intros; ring. Qed.

#[export] Instance Qcadd_InvR : InverseRight Qcplus 0 Qcopp.
Proof. constructor; intros; ring. Qed.

Hint Resolve Qcadd_InvL Qcadd_InvR : Qc.

Distributive

#[export] Instance Qcmul_add_DistrL : DistrLeft Qcplus Qcmult.
Proof. constructor; intros; field. Qed.

#[export] Instance Qcmul_add_DistrR : DistrRight Qcplus Qcmult.
Proof. constructor; intros; field. Qed.

Hint Resolve
  Qcmul_add_DistrL
  Qcmul_add_DistrR
  : Qc.

Semigroup

#[export] Instance Qcadd_SGroup : SGroup Qcplus.
Proof. constructor; auto with Qc. Qed.

#[export] Instance Qcmul_SGroup : SGroup Qcmult.
Proof. constructor; auto with Qc. Qed.

Hint Resolve
  Qcadd_SGroup
  Qcmul_SGroup
  : Qc.

Abelian semigroup

#[export] Instance Qcadd_ASGroup : ASGroup Qcplus.
Proof. constructor; auto with Qc. Qed.

#[export] Instance Qcmul_ASGroup : ASGroup Qcmult.
Proof. constructor; auto with Qc. Qed.

Hint Resolve
  Qcadd_ASGroup
  Qcmul_ASGroup
  : Qc.

Monoid

#[export] Instance Qcadd_Monoid : Monoid Qcplus 0.
Proof. constructor; auto with Qc. Qed.

#[export] Instance Qcmul_Monoid : Monoid Qcmult 1.
Proof. constructor; auto with Qc. Qed.

Hint Resolve
  Qcadd_Monoid
  Qcmul_Monoid
  : Qc.

Abelian monoid

#[export] Instance Qcadd_AMonoid : AMonoid Qcplus 0.
Proof. constructor; auto with Qc. Qed.

#[export] Instance Qcmul_AMonoid : AMonoid Qcmult 1.
Proof. constructor; auto with Qc. Qed.

Hint Resolve Qcadd_AMonoid Qcmul_AMonoid : Qc.

Group

#[export] Instance Qcadd_Group : Group Qcplus 0 Qcopp.
Proof. constructor; auto with Qc. Qed.

Hint Resolve Qcadd_Group : Qc.

AGroup

#[export] Instance Qcadd_AGroup : AGroup Qcplus 0 Qcopp.
Proof. constructor; auto with Qc. Qed.

Hint Resolve Qcadd_AGroup : Qc.

Ring

#[export] Instance Qc_Ring : Ring Qcplus 0 Qcopp Qcmult 1.
Proof. constructor; auto with Qc. Qed.

Hint Resolve Qc_Ring : Qc.

ARing

#[export] Instance Qc_ARing : ARing Qcplus 0 Qcopp Qcmult 1.
Proof. constructor; auto with Qc. Qed.

Hint Resolve Qc_ARing : Qc.

Field

#[export] Instance Qc_Field : Field Qcplus 0 Qcopp Qcmult 1 Qcinv.
Proof.
  constructor; auto with Qc.
  - intros. field; auto.
  - intro. easy.
Qed.

Hint Resolve Qc_Field : Qc.

Order

#[export] Instance Qc_Order : Order Qclt Qcle.
Proof.
  constructor; intros; try lia; auto with Qc; auto with qarith.
  - intro. apply Qclt_not_eq in H. easy.
  - apply Qclt_trans with b; auto.
  - apply Qc_dec.
  - split; intros.
    apply Qcle_lt_or_eq; auto. destruct H.
    apply Qclt_le_weak; auto. subst. apply Qcle_refl.
Qed.

Hint Resolve Qc_Order : Qc.

#[export] Instance Qc_OrderedARing :
  OrderedARing Qcplus 0 Qcopp Qcmult 1 Qclt Qcle.
Proof.
  constructor; auto with Qc.
  - apply Qcplus_lt_compat_r.
  - intros. apply Qcmult_lt_compat_r; auto.
Qed.

Hint Resolve Qc_OrderedARing : Qc.

#[export] Instance Qc_OrderedField :
  OrderedField Qcplus 0 Qcopp Qcmult 1 Qcinv Qclt Qcle.
Proof. constructor; auto with Qc. Qed.

Hint Resolve Qc_OrderedField : Qc.






Understanding the Qc type


Section eq.


  Goal Q2Qc (1#2) = Q2Qc (2#4).
  Proof. cbv. f_equal. apply UIP. Qed.
End eq.

Convertion between Qc and other types

Qc to Q
Definition Qc2Q (x : Qc) : Q := this x.

Z to Qc
Definition Z2Qc (x : Z) : Qc := Q2Qc (Z2Q x).

nat to Qc
Definition nat2Qc (x : nat) : Qc := Q2Qc (nat2Q x).

Qc to Z
Definition Qc2Z_ceiling (q : Qc) : Z := Q2Z_ceiling (Qc2Q q).
Definition Qc2Z_floor (q : Qc) : Z := Q2Z_floor (Qc2Q q).

list Q to list Qc
Definition Q2Qc_list l := map Q2Qc l.

dlist Q to dlist Qc
Definition Q2Qc_dlist dl := map Q2Qc_list dl.

list Qc to list Q, for better printing
Definition Qc2Q_list l := map Qc2Q l.

dlist Qc to dlist Q
Definition Qc2Q_dlist dl := map Qc2Q_list dl.

If two Q type value are equal, then its canonical form are equal
Lemma Qcmake_inversion : forall (q1 q2 : Q) (H1 : Qred q1 = q1) (H2 : Qred q2 = q2),
    q1 = q2 -> Qcmake q1 H1 = Qcmake q2 H2.
Proof.
  intros.
  f_equal.   subst.
  f_equal. apply proof_irrelevance.
Qed.

Q2Qc (Qc2Q qc) = qc
Lemma Q2Qc_Qc2Q : forall (qc : Qc), Q2Qc (Qc2Q qc) = qc.
Proof.
  intros. unfold Qc2Q. unfold Q2Qc. destruct qc. simpl.
  f_equal.   apply Qcmake_inversion. auto.
Qed.

Properties for Qeqb and Qeq


Notation Qceqdec := Qc_eq_dec.

Notation Qceqb := Qc_eq_bool.

Infix "=?" := Qceqb : Qc_scope.

Reflection of (=) and (=?)
Lemma Qceqb_true_iff : forall x y, x =? y = true <-> x = y.
Proof.
  intros; split; intros.
  - apply Qc_eq_bool_correct; auto.
  - subst. unfold Qceqb, Qc_eq_bool.
    unfold Qceqdec.
    destruct (Qeq_dec y y) eqn: E1; auto.
    destruct n. apply Qeq_refl.
Qed.

Lemma Qceqb_false_iff : forall x y, x =? y = false <-> x <> y.
Proof.
  intros; split; intros.
  - intro. apply Qceqb_true_iff in H0. rewrite H in H0. easy.
  - destruct (Qceqb x y) eqn:E1; auto. apply Qceqb_true_iff in E1. easy.
Qed.

Others

Sqrt of Q