FinMatrix.CoqExt.QcExt
Lemma Qcplus_opp_l : forall a : Qc, - a + a = 0.
Proof. intros. rewrite Qcplus_comm. rewrite Qcplus_opp_r. auto. Qed.
Proof. intros. rewrite Qcplus_comm. rewrite Qcplus_opp_r. auto. Qed.
~ (a < a)
Lemma Qclt_irrefl : forall a : Qc, ~ (a < a).
Proof. intros. intro. apply Qclt_not_eq in H. easy. Qed.
Proof. intros. intro. apply Qclt_not_eq in H. easy. Qed.
a <> b -> a <= b -> a < b
Lemma Qcle_lt_strong : forall a b : Qc, a <> b -> a <= b -> a < b.
Proof.
intros.
destruct (Qc_dec a b) as [[H1|H1]|H1]; auto.
- apply Qcle_not_lt in H0. easy.
- subst. easy.
Qed.
Proof.
intros.
destruct (Qc_dec a b) as [[H1|H1]|H1]; auto.
- apply Qcle_not_lt in H0. easy.
- subst. easy.
Qed.
c + a = c + b -> a = b
Lemma Qcplus_reg_l : forall a b c : Qc, c + a = c + b -> a = b.
Proof.
intros.
assert (-c + c + a = -c + c + b). { rewrite !associative. rewrite H. auto. }
rewrite Qcplus_opp_l in H0. rewrite !Qcplus_0_l in H0. auto.
Qed.
Proof.
intros.
assert (-c + c + a = -c + c + b). { rewrite !associative. rewrite H. auto. }
rewrite Qcplus_opp_l in H0. rewrite !Qcplus_0_l in H0. auto.
Qed.
a + c = b + c -> a = b
Lemma Qcplus_reg_r : forall a b c : Qc, a + c = b + c -> a = b.
Proof.
intros.
assert (a + c + -c = b + c + -c). { rewrite H. auto. }
rewrite !associative in H0. rewrite Qcplus_opp_r in H0.
rewrite !Qcplus_0_r in H0. auto.
Qed.
Proof.
intros.
assert (a + c + -c = b + c + -c). { rewrite H. auto. }
rewrite !associative in H0. rewrite Qcplus_opp_r in H0.
rewrite !Qcplus_0_r in H0. auto.
Qed.
b < c -> a + b < a + c
Lemma Qcplus_lt_compat_l : forall a b c : Qc, b < c -> a + b < a + c.
Proof.
intros. destruct (Qc_eq_dec b c) as [H1|H1].
- subst. apply Qclt_not_eq in H. easy.
- pose proof (Qcplus_le_compat a a b c).
assert (a <= a). apply Qcle_refl.
assert (b <= c). apply Qclt_le_weak; auto.
specialize (H0 H2 H3).
apply Qcle_lt_or_eq in H0. destruct H0; auto.
assert (-a + (a + b) = -a + (a + c)). rewrite H0; auto.
rewrite <- !associative in H4. rewrite !Qcplus_opp_l,!Qcplus_0_l in H4. easy.
Qed.
Proof.
intros. destruct (Qc_eq_dec b c) as [H1|H1].
- subst. apply Qclt_not_eq in H. easy.
- pose proof (Qcplus_le_compat a a b c).
assert (a <= a). apply Qcle_refl.
assert (b <= c). apply Qclt_le_weak; auto.
specialize (H0 H2 H3).
apply Qcle_lt_or_eq in H0. destruct H0; auto.
assert (-a + (a + b) = -a + (a + c)). rewrite H0; auto.
rewrite <- !associative in H4. rewrite !Qcplus_opp_l,!Qcplus_0_l in H4. easy.
Qed.
a < b -> a + c < b + c
Lemma Qcplus_lt_compat_r : forall a b c : Qc, a < b -> a + c < b + c.
Proof. intros. rewrite !(Qcplus_comm _ c). apply Qcplus_lt_compat_l; auto. Qed.
Proof. intros. rewrite !(Qcplus_comm _ c). apply Qcplus_lt_compat_l; auto. Qed.
a < b -> 0 < c -> c * a < c * b
Lemma Qcmult_lt_compat_l : forall a b c : Qc, a < b -> 0 < c -> c * a < c * b.
Proof. intros. rewrite !(commutative c _). apply Qcmult_lt_compat_r; auto. Qed.
Proof. intros. rewrite !(commutative c _). apply Qcmult_lt_compat_r; auto. Qed.
Hint Resolve eq_equivalence : Qc.
operations are well-defined. Eg: Proper (eq ==> eq ==> eq) Qcplus
Lemma Qcadd_wd : Proper (eq ==> eq ==> eq) Qcplus.
Proof. repeat (hnf; intros); subst; auto. Qed.
Lemma Qcopp_wd : Proper (eq ==> eq) Qcopp.
Proof. repeat (hnf; intros); subst; auto. Qed.
Lemma Qcsub_wd : Proper (eq ==> eq ==> eq) Qcminus.
Proof. repeat (hnf; intros); subst; auto. Qed.
Lemma Qcmul_wd : Proper (eq ==> eq ==> eq) Qcmult.
Proof. repeat (hnf; intros); subst; auto. Qed.
Lemma Qcinv_wd : Proper (eq ==> eq) Qcinv.
Proof. repeat (hnf; intros); subst; auto. Qed.
Lemma Qcdiv_wd : Proper (eq ==> eq ==> eq) Qcdiv.
Proof. repeat (hnf; intros); subst; auto. Qed.
Hint Resolve
Qcadd_wd Qcopp_wd Qcsub_wd
Qcmul_wd Qcinv_wd Qcdiv_wd : Qc.
Decidable
#[export] Instance Qc_eq_Dec : Dec (@eq Qc).
Proof. constructor. apply Qc_eq_dec. Defined.
#[export] Instance Qc_lt_Dec : Dec Qclt.
Proof.
constructor. intros. destruct (Qclt_le_dec a b); auto.
right. intro. apply Qcle_not_lt in q. easy.
Defined.
#[export] Instance Qc_le_Dec : Dec Qcle.
Proof.
constructor. intros. destruct (Qclt_le_dec b a); auto.
right. intro. apply Qcle_not_lt in H. easy.
Defined.
Associative
#[export] Instance Qcadd_Assoc : Associative Qcplus.
Proof. constructor; intros; field. Qed.
#[export] Instance Qcmul_Assoc : Associative Qcmult.
Proof. constructor; intros; field. Qed.
Hint Resolve Qcadd_Assoc Qcmul_Assoc : Qc.
Commutative
#[export] Instance Qcadd_Comm : Commutative Qcplus.
Proof. constructor; intros; field. Qed.
#[export] Instance Qcmul_Comm : Commutative Qcmult.
Proof. constructor; intros; field. Qed.
Hint Resolve Qcadd_Comm Qcmul_Comm : Qc.
Identity Left/Right
#[export] Instance Qcadd_IdL : IdentityLeft Qcplus 0.
Proof. constructor; intros; field. Qed.
#[export] Instance Qcadd_IdR : IdentityRight Qcplus 0.
Proof. constructor; intros; field. Qed.
#[export] Instance Qcmul_IdL : IdentityLeft Qcmult 1.
Proof. constructor; intros; field. Qed.
#[export] Instance Qcmul_IdR : IdentityRight Qcmult 1.
Proof. constructor; intros; field. Qed.
Hint Resolve
Qcadd_IdL Qcadd_IdR
Qcmul_IdL Qcmul_IdR : Qc.
Inverse Left/Right
#[export] Instance Qcadd_InvL : InverseLeft Qcplus 0 Qcopp.
Proof. constructor; intros; ring. Qed.
#[export] Instance Qcadd_InvR : InverseRight Qcplus 0 Qcopp.
Proof. constructor; intros; ring. Qed.
Hint Resolve Qcadd_InvL Qcadd_InvR : Qc.
Distributive
#[export] Instance Qcmul_add_DistrL : DistrLeft Qcplus Qcmult.
Proof. constructor; intros; field. Qed.
#[export] Instance Qcmul_add_DistrR : DistrRight Qcplus Qcmult.
Proof. constructor; intros; field. Qed.
Hint Resolve
Qcmul_add_DistrL
Qcmul_add_DistrR
: Qc.
Semigroup
#[export] Instance Qcadd_SGroup : SGroup Qcplus.
Proof. constructor; auto with Qc. Qed.
#[export] Instance Qcmul_SGroup : SGroup Qcmult.
Proof. constructor; auto with Qc. Qed.
Hint Resolve
Qcadd_SGroup
Qcmul_SGroup
: Qc.
Abelian semigroup
#[export] Instance Qcadd_ASGroup : ASGroup Qcplus.
Proof. constructor; auto with Qc. Qed.
#[export] Instance Qcmul_ASGroup : ASGroup Qcmult.
Proof. constructor; auto with Qc. Qed.
Hint Resolve
Qcadd_ASGroup
Qcmul_ASGroup
: Qc.
Monoid
#[export] Instance Qcadd_Monoid : Monoid Qcplus 0.
Proof. constructor; auto with Qc. Qed.
#[export] Instance Qcmul_Monoid : Monoid Qcmult 1.
Proof. constructor; auto with Qc. Qed.
Hint Resolve
Qcadd_Monoid
Qcmul_Monoid
: Qc.
Abelian monoid
#[export] Instance Qcadd_AMonoid : AMonoid Qcplus 0.
Proof. constructor; auto with Qc. Qed.
#[export] Instance Qcmul_AMonoid : AMonoid Qcmult 1.
Proof. constructor; auto with Qc. Qed.
Hint Resolve Qcadd_AMonoid Qcmul_AMonoid : Qc.
Group
#[export] Instance Qcadd_Group : Group Qcplus 0 Qcopp.
Proof. constructor; auto with Qc. Qed.
Hint Resolve Qcadd_Group : Qc.
AGroup
#[export] Instance Qcadd_AGroup : AGroup Qcplus 0 Qcopp.
Proof. constructor; auto with Qc. Qed.
Hint Resolve Qcadd_AGroup : Qc.
Ring
#[export] Instance Qc_Ring : Ring Qcplus 0 Qcopp Qcmult 1.
Proof. constructor; auto with Qc. Qed.
Hint Resolve Qc_Ring : Qc.
ARing
#[export] Instance Qc_ARing : ARing Qcplus 0 Qcopp Qcmult 1.
Proof. constructor; auto with Qc. Qed.
Hint Resolve Qc_ARing : Qc.
Field
#[export] Instance Qc_Field : Field Qcplus 0 Qcopp Qcmult 1 Qcinv.
Proof.
constructor; auto with Qc.
- intros. field; auto.
- intro. easy.
Qed.
Hint Resolve Qc_Field : Qc.
Order
#[export] Instance Qc_Order : Order Qclt Qcle.
Proof.
constructor; intros; try lia; auto with Qc; auto with qarith.
- intro. apply Qclt_not_eq in H. easy.
- apply Qclt_trans with b; auto.
- apply Qc_dec.
- split; intros.
apply Qcle_lt_or_eq; auto. destruct H.
apply Qclt_le_weak; auto. subst. apply Qcle_refl.
Qed.
Hint Resolve Qc_Order : Qc.
#[export] Instance Qc_OrderedARing :
OrderedARing Qcplus 0 Qcopp Qcmult 1 Qclt Qcle.
Proof.
constructor; auto with Qc.
- apply Qcplus_lt_compat_r.
- intros. apply Qcmult_lt_compat_r; auto.
Qed.
Hint Resolve Qc_OrderedARing : Qc.
#[export] Instance Qc_OrderedField :
OrderedField Qcplus 0 Qcopp Qcmult 1 Qcinv Qclt Qcle.
Proof. constructor; auto with Qc. Qed.
Hint Resolve Qc_OrderedField : Qc.
Z to Qc
nat to Qc
Qc to Z
Definition Qc2Z_ceiling (q : Qc) : Z := Q2Z_ceiling (Qc2Q q).
Definition Qc2Z_floor (q : Qc) : Z := Q2Z_floor (Qc2Q q).
Definition Qc2Z_floor (q : Qc) : Z := Q2Z_floor (Qc2Q q).
list Q to list Qc
dlist Q to dlist Qc
list Qc to list Q, for better printing
dlist Qc to dlist Q
If two Q type value are equal, then its canonical form are equal
Lemma Qcmake_inversion : forall (q1 q2 : Q) (H1 : Qred q1 = q1) (H2 : Qred q2 = q2),
q1 = q2 -> Qcmake q1 H1 = Qcmake q2 H2.
Proof.
intros.
f_equal. subst.
f_equal. apply proof_irrelevance.
Qed.
q1 = q2 -> Qcmake q1 H1 = Qcmake q2 H2.
Proof.
intros.
f_equal. subst.
f_equal. apply proof_irrelevance.
Qed.
Q2Qc (Qc2Q qc) = qc
Lemma Q2Qc_Qc2Q : forall (qc : Qc), Q2Qc (Qc2Q qc) = qc.
Proof.
intros. unfold Qc2Q. unfold Q2Qc. destruct qc. simpl.
f_equal. apply Qcmake_inversion. auto.
Qed.
Proof.
intros. unfold Qc2Q. unfold Q2Qc. destruct qc. simpl.
f_equal. apply Qcmake_inversion. auto.
Qed.
Reflection of (=) and (=?)
Lemma Qceqb_true_iff : forall x y, x =? y = true <-> x = y.
Proof.
intros; split; intros.
- apply Qc_eq_bool_correct; auto.
- subst. unfold Qceqb, Qc_eq_bool.
unfold Qceqdec.
destruct (Qeq_dec y y) eqn: E1; auto.
destruct n. apply Qeq_refl.
Qed.
Lemma Qceqb_false_iff : forall x y, x =? y = false <-> x <> y.
Proof.
intros; split; intros.
- intro. apply Qceqb_true_iff in H0. rewrite H in H0. easy.
- destruct (Qceqb x y) eqn:E1; auto. apply Qceqb_true_iff in E1. easy.
Qed.
Proof.
intros; split; intros.
- apply Qc_eq_bool_correct; auto.
- subst. unfold Qceqb, Qc_eq_bool.
unfold Qceqdec.
destruct (Qeq_dec y y) eqn: E1; auto.
destruct n. apply Qeq_refl.
Qed.
Lemma Qceqb_false_iff : forall x y, x =? y = false <-> x <> y.
Proof.
intros; split; intros.
- intro. apply Qceqb_true_iff in H0. rewrite H in H0. easy.
- destruct (Qceqb x y) eqn:E1; auto. apply Qceqb_true_iff in E1. easy.
Qed.