FinMatrix.Matrix.Vector
Require Export ListExt Hierarchy.
Require Export RExt.
Require Export Fin Sequence.
Require Import Extraction.
Generalizable Variable A Aadd Azero Aopp Amul Aone Ainv Ale Alt Altb Aleb a2r.
Generalizable Variable B Badd Bzero.
Control the scope
Open Scope R_scope.
Open Scope nat_scope.
Open Scope A_scope.
Open Scope vec_scope.
Open Scope nat_scope.
Open Scope A_scope.
Open Scope vec_scope.
Notation vnth A n a i := ((a:@vec A n) (i : 'I_n)).
Notation "a .[ i ]" := (vnth _ _ a i) : vec_scope.
Lemma vnth_eq : forall {A n} (a : @vec A n) i j (Hi: i < n) (Hj: j < n),
i = j -> a.[nat2fin i Hi] = a.[nat2fin j Hj].
Proof. intros. subst. f_equal. apply fin_eq_iff; auto. Qed.
Notation "a .1" := (a.[#0]) : vec_scope.
Notation "a .2" := (a.[#1]) : vec_scope.
Notation "a .3" := (a.[#2]) : vec_scope.
Notation "a .4" := (a.[#3]) : vec_scope.
i = j -> a.[nat2fin i Hi] = a.[nat2fin j Hj].
Proof. intros. subst. f_equal. apply fin_eq_iff; auto. Qed.
Notation "a .1" := (a.[#0]) : vec_scope.
Notation "a .2" := (a.[#1]) : vec_scope.
Notation "a .3" := (a.[#2]) : vec_scope.
Notation "a .4" := (a.[#3]) : vec_scope.
Lemma veq_iff_vnth : forall {A} {n} (a b : @vec A n),
a = b <-> forall (i : 'I_n), a.[i] = b.[i].
Proof.
intros. split; intros; subst; auto.
extensionality i; auto.
Qed.
a = b <-> forall (i : 'I_n), a.[i] = b.[i].
Proof.
intros. split; intros; subst; auto.
extensionality i; auto.
Qed.
Lemma vnth_sameIdx_imply : forall {A n} {a b : @vec A n} {i} {H1 H2 H3 H4 : i < n},
a (nat2fin i H1) = b (nat2fin i H2) ->
a (nat2fin i H3) = b (nat2fin i H4).
Proof.
intros.
replace (nat2fin i H3 : 'I_n) with (nat2fin i H1 : 'I_n).
replace (nat2fin i H4 : 'I_n) with (nat2fin i H2 : 'I_n); auto.
apply fin_eq_iff; auto. apply fin_eq_iff; auto.
Qed.
a (nat2fin i H1) = b (nat2fin i H2) ->
a (nat2fin i H3) = b (nat2fin i H4).
Proof.
intros.
replace (nat2fin i H3 : 'I_n) with (nat2fin i H1 : 'I_n).
replace (nat2fin i H4 : 'I_n) with (nat2fin i H2 : 'I_n); auto.
apply fin_eq_iff; auto. apply fin_eq_iff; auto.
Qed.
{u = v} + {u <> v}
#[export] Instance veq_dec : forall {A n} {AeqDec : Dec (@eq A)},
Dec (@eq (@vec A n)).
Proof.
intros. constructor. induction n; intros.
- left. extensionality i. fin.
- destruct (IHn (fun i => a #i) (fun i => b #i)) as [H|H].
+ destruct (Aeqdec (a#n) (b#n)) as [H1|H1].
* left. extensionality i. destruct (i ??< n) as [E|E].
** pose proof (equal_f H). specialize (H0 (fPredRange i E)).
simpl in H0. rewrite nat2finS_fin2nat in H0. auto.
** pose proof (fin2nat_lt i). assert (fin2nat i = n) by lia.
assert (i = #n).
{ eapply fin2nat_imply_nat2fin in H2. rewrite <- H2.
erewrite nat2finS_eq. auto. }
subst. auto.
* right. intro. destruct H1. subst. auto.
+ right. intro. subst. easy.
Unshelve. auto.
Qed.
Dec (@eq (@vec A n)).
Proof.
intros. constructor. induction n; intros.
- left. extensionality i. fin.
- destruct (IHn (fun i => a #i) (fun i => b #i)) as [H|H].
+ destruct (Aeqdec (a#n) (b#n)) as [H1|H1].
* left. extensionality i. destruct (i ??< n) as [E|E].
** pose proof (equal_f H). specialize (H0 (fPredRange i E)).
simpl in H0. rewrite nat2finS_fin2nat in H0. auto.
** pose proof (fin2nat_lt i). assert (fin2nat i = n) by lia.
assert (i = #n).
{ eapply fin2nat_imply_nat2fin in H2. rewrite <- H2.
erewrite nat2finS_eq. auto. }
subst. auto.
* right. intro. destruct H1. subst. auto.
+ right. intro. subst. easy.
Unshelve. auto.
Qed.
The equality of 0-D vector
Lemma v0eq : forall {A} (a b : @vec A 0), a = b.
Proof. intros. apply veq_iff_vnth. intros. exfalso. apply fin0_False; auto. Qed.
Lemma v0neq : forall {A} (a b : @vec A 0), a <> b -> False.
Proof. intros. destruct H. apply v0eq. Qed.
Proof. intros. apply veq_iff_vnth. intros. exfalso. apply fin0_False; auto. Qed.
Lemma v0neq : forall {A} (a b : @vec A 0), a <> b -> False.
Proof. intros. destruct H. apply v0eq. Qed.
The equality of 1-D vector
Lemma v1eq_iff : forall {A} (a b : @vec A 1), a = b <-> a.1 = b.1.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H)|].
lia.
Qed.
Lemma v1neq_iff : forall {A} (a b : @vec A 1), a <> b <-> a.1 <> b.1.
Proof. intros. rewrite v1eq_iff. tauto. Qed.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H)|].
lia.
Qed.
Lemma v1neq_iff : forall {A} (a b : @vec A 1), a <> b <-> a.1 <> b.1.
Proof. intros. rewrite v1eq_iff. tauto. Qed.
The equality of 2-D vector
Lemma v2eq_iff : forall {A} (a b : @vec A 2), a = b <-> a.1 = b.1 /\ a.2 = b.2.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
destruct H as [H1 H2]. repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H1)|].
destruct n; [apply (vnth_sameIdx_imply H2)|].
lia.
Qed.
Lemma v2neq_iff : forall {A} (a b : @vec A 2), a <> b <-> (a.1 <> b.1 \/ a.2 <> b.2).
Proof. intros. rewrite v2eq_iff. tauto. Qed.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
destruct H as [H1 H2]. repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H1)|].
destruct n; [apply (vnth_sameIdx_imply H2)|].
lia.
Qed.
Lemma v2neq_iff : forall {A} (a b : @vec A 2), a <> b <-> (a.1 <> b.1 \/ a.2 <> b.2).
Proof. intros. rewrite v2eq_iff. tauto. Qed.
The equality of 3-D vector
Lemma v3eq_iff : forall {A} (a b : @vec A 3),
a = b <-> a.1 = b.1 /\ a.2 = b.2 /\ a.3 = b.3.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
destruct H as [H1 [H2 H3]]. repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H1)|].
destruct n; [apply (vnth_sameIdx_imply H2)|].
destruct n; [apply (vnth_sameIdx_imply H3)|].
lia.
Qed.
Lemma v3neq_iff : forall {A} (a b : @vec A 3),
a <> b <-> (a.1 <> b.1 \/ a.2 <> b.2 \/ a.3 <> b.3).
Proof. intros. rewrite v3eq_iff. tauto. Qed.
a = b <-> a.1 = b.1 /\ a.2 = b.2 /\ a.3 = b.3.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
destruct H as [H1 [H2 H3]]. repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H1)|].
destruct n; [apply (vnth_sameIdx_imply H2)|].
destruct n; [apply (vnth_sameIdx_imply H3)|].
lia.
Qed.
Lemma v3neq_iff : forall {A} (a b : @vec A 3),
a <> b <-> (a.1 <> b.1 \/ a.2 <> b.2 \/ a.3 <> b.3).
Proof. intros. rewrite v3eq_iff. tauto. Qed.
The equality of 4-D vector
Lemma v4eq_iff : forall {A} (a b : @vec A 4),
a = b <-> a.1 = b.1 /\ a.2 = b.2 /\ a.3 = b.3 /\ a.4 = b.4.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
destruct H as [H1 [H2 [H3 H4]]]. repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H1)|].
destruct n; [apply (vnth_sameIdx_imply H2)|].
destruct n; [apply (vnth_sameIdx_imply H3)|].
destruct n; [apply (vnth_sameIdx_imply H4)|].
lia.
Qed.
Lemma v4neq_iff : forall {A} (a b : @vec A 4),
a <> b <-> (a.1 <> b.1 \/ a.2 <> b.2 \/ a.3 <> b.3 \/ a.4 <> b.4).
Proof. intros. rewrite v4eq_iff. tauto. Qed.
a = b <-> a.1 = b.1 /\ a.2 = b.2 /\ a.3 = b.3 /\ a.4 = b.4.
Proof.
intros. split; intros; subst; auto. unfold nat2finS in H; simpl in H.
destruct H as [H1 [H2 [H3 H4]]]. repeat destruct nat_ltb_reflect; try lia.
apply veq_iff_vnth; intros. destruct i as [n Hn].
destruct n; [apply (vnth_sameIdx_imply H1)|].
destruct n; [apply (vnth_sameIdx_imply H2)|].
destruct n; [apply (vnth_sameIdx_imply H3)|].
destruct n; [apply (vnth_sameIdx_imply H4)|].
lia.
Qed.
Lemma v4neq_iff : forall {A} (a b : @vec A 4),
a <> b <-> (a.1 <> b.1 \/ a.2 <> b.2 \/ a.3 <> b.3 \/ a.4 <> b.4).
Proof. intros. rewrite v4eq_iff. tauto. Qed.
Lemma vneq_iff_exist_vnth_neq : forall {A n} (a b : @vec A n),
a <> b <-> exists i, a.[i] <> b.[i].
Proof.
intros. rewrite veq_iff_vnth. split; intros.
- apply not_all_ex_not; auto.
- apply ex_not_not_all; auto.
Qed.
a <> b <-> exists i, a.[i] <> b.[i].
Proof.
intros. rewrite veq_iff_vnth. split; intros.
- apply not_all_ex_not; auto.
- apply ex_not_not_all; auto.
Qed.
Definition cast_vec {A} n m (a : @vec A n) (H : n = m) : @vec A m :=
eq_rect_r (fun n0 => vec n0 -> vec m) (fun a0 : vec m => a0) H a.
Section vrepeat.
Context {A} {Azero : A} {n : nat}.
Definition vrepeat (a : A) : @vec A n := fun _ => a.
Context {A} {Azero : A} {n : nat}.
Definition vrepeat (a : A) : @vec A n := fun _ => a.
(repeat a).i = a
Lemma vnth_vrepeat : forall a i, (vrepeat a).[i] = a.
Proof. intros. unfold vrepeat; auto. Qed.
End vrepeat.
Proof. intros. unfold vrepeat; auto. Qed.
End vrepeat.
vzero.i = 0
Section f2v_v2f.
Context {A} (Azero : A).
Definition f2v {n} (f : nat -> A) : @vec A n := fun (i : 'I_n) => f i.
Context {A} (Azero : A).
Definition f2v {n} (f : nat -> A) : @vec A n := fun (i : 'I_n) => f i.
(f2v a).i = a i
Lemma vnth_f2v : forall {n} (f : nat -> A) (i : 'I_n), (@f2v n f).[i] = f i.
Proof. auto. Qed.
Lemma f2v_inj : forall {n} (f g : nat -> A),
@f2v n f = @f2v n g -> (forall i, i < n -> f i = g i).
Proof. intros. unfold f2v in *. apply (equal_f H (nat2fin i H0)). Qed.
Definition v2f {n} (a : @vec A n) : (nat -> A) :=
fun i => match i ??< n with
| left E => a (nat2fin i E)
| _ => Azero
end.
Proof. auto. Qed.
Lemma f2v_inj : forall {n} (f g : nat -> A),
@f2v n f = @f2v n g -> (forall i, i < n -> f i = g i).
Proof. intros. unfold f2v in *. apply (equal_f H (nat2fin i H0)). Qed.
Definition v2f {n} (a : @vec A n) : (nat -> A) :=
fun i => match i ??< n with
| left E => a (nat2fin i E)
| _ => Azero
end.
Lemma nth_v2f : forall {n} (a : @vec A n) (i : nat) (H : i < n),
(v2f a) i = a.[nat2fin i H].
Proof. intros. unfold v2f. fin. Qed.
(v2f a) i = a.[nat2fin i H].
Proof. intros. unfold v2f. fin. Qed.
(v2f a) i = a#i
Lemma nth_v2f_nat2finS : forall {n} (a : @vec A (S n)) i,
i < S n -> (v2f a) i = a.[#i].
Proof.
intros. rewrite nth_v2f with (H:=H).
rewrite nat2finS_eq with (E:=H). auto.
Qed.
Lemma v2f_inj : forall {n} (a b : @vec A n),
(forall i, i < n -> (v2f a) i = (v2f b) i) -> a = b.
Proof.
intros. apply veq_iff_vnth; intros.
specialize (H i (fin2nat_lt _)).
unfold v2f in *. fin. destruct E. fin.
Qed.
i < S n -> (v2f a) i = a.[#i].
Proof.
intros. rewrite nth_v2f with (H:=H).
rewrite nat2finS_eq with (E:=H). auto.
Qed.
Lemma v2f_inj : forall {n} (a b : @vec A n),
(forall i, i < n -> (v2f a) i = (v2f b) i) -> a = b.
Proof.
intros. apply veq_iff_vnth; intros.
specialize (H i (fin2nat_lt _)).
unfold v2f in *. fin. destruct E. fin.
Qed.
f2v (v2f a) = a
Lemma f2v_v2f : forall {n} (a : vec n), (@f2v n (v2f a)) = a.
Proof.
intros. apply veq_iff_vnth; intros. rewrite vnth_f2v.
rewrite nth_v2f with (H:=fin2nat_lt _). fin.
Qed.
Proof.
intros. apply veq_iff_vnth; intros. rewrite vnth_f2v.
rewrite nth_v2f with (H:=fin2nat_lt _). fin.
Qed.
v2f (f2v a) = a
Lemma v2f_f2v : forall {n} (a : nat -> A) i, i < n -> v2f (@f2v n a) i = a i.
Proof. intros. rewrite nth_v2f with (H:=H). rewrite vnth_f2v. auto. Qed.
End f2v_v2f.
Proof. intros. rewrite nth_v2f with (H:=H). rewrite vnth_f2v. auto. Qed.
End f2v_v2f.
Section l2v_v2l.
Context {A} (Azero : A).
Definition l2v {n : nat} (l : list A) : vec n := fun (i : 'I_n) => nth i l Azero.
Context {A} (Azero : A).
Definition l2v {n : nat} (l : list A) : vec n := fun (i : 'I_n) => nth i l Azero.
(l2v l).i = nth i l
Lemma vnth_l2v : forall {n} (l : list A) (i : 'I_n), (@l2v n l).[i] = nth i l Azero.
Proof. auto. Qed.
Proof. auto. Qed.
l2v l1 = l2v l2 -> l1 = l2
Lemma l2v_inj : forall {n} (l1 l2 : list A),
length l1 = n -> length l2 = n -> @l2v n l1 = @l2v n l2 -> l1 = l2.
Proof.
intros. unfold l2v in *.
apply list_eq_ext with (Azero:=Azero)(n:=n); auto; intros.
pose proof (equal_f H1). specialize (H3 (nat2fin i H2)); simpl in H3. auto.
Qed.
Definition v2l {n} (a : vec n) : list A := map a (finseq n).
length l1 = n -> length l2 = n -> @l2v n l1 = @l2v n l2 -> l1 = l2.
Proof.
intros. unfold l2v in *.
apply list_eq_ext with (Azero:=Azero)(n:=n); auto; intros.
pose proof (equal_f H1). specialize (H3 (nat2fin i H2)); simpl in H3. auto.
Qed.
Definition v2l {n} (a : vec n) : list A := map a (finseq n).
nth i (v2l a) = a.i
Lemma nth_v2l : forall {n} (a : vec n) (i : nat) (E : i < n),
nth i (v2l a) Azero = a (nat2fin i E).
Proof. intros. unfold v2l. rewrite nth_map_finseq with (E:=E). auto. Qed.
nth i (v2l a) Azero = a (nat2fin i E).
Proof. intros. unfold v2l. rewrite nth_map_finseq with (E:=E). auto. Qed.
length (v2l a) = n
Lemma v2l_length : forall {n} (a : vec n), length (v2l a) = n.
Proof. intros. unfold v2l. rewrite map_length, finseq_length. auto. Qed.
Proof. intros. unfold v2l. rewrite map_length, finseq_length. auto. Qed.
v2l a = v2l b -> a = b
Lemma v2l_inj : forall {n} (a b : vec n), v2l a = v2l b -> a = b.
Proof.
intros. unfold v2l in *. apply veq_iff_vnth; intros.
rewrite map_ext_in_iff in H. apply (H i). apply In_finseq.
Qed.
Proof.
intros. unfold v2l in *. apply veq_iff_vnth; intros.
rewrite map_ext_in_iff in H. apply (H i). apply In_finseq.
Qed.
l2v (v2l a) = a
Lemma l2v_v2l : forall {n} (a : vec n), (@l2v n (v2l a)) = a.
Proof.
intros. apply veq_iff_vnth; intros.
rewrite vnth_l2v. rewrite nth_v2l with (E:=fin2nat_lt _).
rewrite nat2fin_fin2nat. auto.
Qed.
Proof.
intros. apply veq_iff_vnth; intros.
rewrite vnth_l2v. rewrite nth_v2l with (E:=fin2nat_lt _).
rewrite nat2fin_fin2nat. auto.
Qed.
v2l (l2v l) = l
Lemma v2l_l2v : forall {n} (l : list A), length l = n -> v2l (@l2v n l) = l.
Proof.
intros. apply list_eq_ext with (Azero:=Azero)(n:=n); intros; auto.
- rewrite nth_v2l with (E:=H0). rewrite vnth_l2v.
rewrite fin2nat_nat2fin. auto.
- apply v2l_length.
Qed.
Proof.
intros. apply list_eq_ext with (Azero:=Azero)(n:=n); intros; auto.
- rewrite nth_v2l with (E:=H0). rewrite vnth_l2v.
rewrite fin2nat_nat2fin. auto.
- apply v2l_length.
Qed.
∀ v, (∃ l, l2v l = a)
Lemma l2v_surj : forall {n} (a : vec n), (exists l, @l2v n l = a).
Proof. intros. exists (v2l a). apply l2v_v2l. Qed.
Proof. intros. exists (v2l a). apply l2v_v2l. Qed.
∀ l, (∃ v, v2l v = l)
Lemma v2l_surj : forall {n} (l : list A), length l = n -> (exists a : vec n, v2l a = l).
Proof. intros. exists (l2v l). apply v2l_l2v; auto. Qed.
End l2v_v2l.
Proof. intros. exists (l2v l). apply v2l_l2v; auto. Qed.
End l2v_v2l.
Automation for vector equality proofs
Ltac veq :=
apply v2l_inj; cbv; list_eq.
Section test.
Let v : vec 3 := fun (i : 'I_3) => S i.
Goal @l2v _ 0 3 [1;2;3] = v.
Proof.
apply veq_iff_vnth; intros.
repeat (destruct i; simpl; auto; try lia).
Qed.
End test.
apply v2l_inj; cbv; list_eq.
Section test.
Let v : vec 3 := fun (i : 'I_3) => S i.
Goal @l2v _ 0 3 [1;2;3] = v.
Proof.
apply veq_iff_vnth; intros.
repeat (destruct i; simpl; auto; try lia).
Qed.
End test.
Convert vector to its elements
Section veq_exist.
Context {A : Type}.
Lemma veq_exist_2 : forall (a : @vec A 2), exists a1 a2 : A, a = l2v a1 [a1;a2].
Proof. intros. exists (a.1),(a.2). apply v2l_inj; cbv; list_eq. Qed.
Lemma veq_exist_3 : forall (a : @vec A 3), exists a1 a2 a3 : A, a = l2v a1 [a1;a2;a3].
Proof. intros. exists (a.1),(a.2),(a.3). apply v2l_inj; cbv; list_eq. Qed.
Lemma veq_exist_4 : forall (a : @vec A 4), exists a1 a2 a3 a4 : A, a = l2v a2 [a1;a2;a3;a4].
Proof. intros. exists (a.1),(a.2),(a.3),(a.4). apply v2l_inj; cbv; list_eq. Qed.
End veq_exist.
destruct a vector to its elements
Ltac v2e a :=
let a1 := fresh "a1" in
let a2 := fresh "a2" in
let a3 := fresh "a3" in
let a4 := fresh "a4" in
let Ha := fresh "Ha" in
match type of a with
| vec 2 =>
destruct (veq_exist_2 a) as (a1,(a2,Ha)); rewrite Ha; try clear a Ha;
try (v2e a1; v2e a2)
| vec 3 =>
destruct (veq_exist_3 a) as (a1,(a2,(a3,Ha))); rewrite Ha; try clear a Ha;
try (v2e a1; v2e a2; v2e a3)
| vec 4 =>
destruct (veq_exist_4 a) as (a1,(a2,(a3,(a4,Ha)))); rewrite Ha; try clear a Ha;
try (v2e a1; v2e a2; v2e a3; v2e a4)
end.
Ltac v2e1 a :=
let a1 := fresh "a1" in
let a2 := fresh "a2" in
let a3 := fresh "a3" in
let a4 := fresh "a4" in
let Ha := fresh "Ha" in
match type of a with
| vec 2 =>
destruct (veq_exist_2 a) as (a1,(a2,Ha)); rewrite Ha; try clear a Ha
| vec 3 =>
destruct (veq_exist_3 a) as (a1,(a2,(a3,Ha))); rewrite Ha; try clear a Ha
| vec 4 =>
destruct (veq_exist_4 a) as (a1,(a2,(a3,(a4,Ha)))); rewrite Ha; try clear a Ha
end.
Section test.
Goal forall A (v : @vec A 3), v = v.
Proof. intros. v2e v. auto. Qed.
Goal forall A (v : @vec (@vec A 2) 3), v = v.
Proof. intros. v2e v. auto. Qed.
End test.
let a1 := fresh "a1" in
let a2 := fresh "a2" in
let a3 := fresh "a3" in
let a4 := fresh "a4" in
let Ha := fresh "Ha" in
match type of a with
| vec 2 =>
destruct (veq_exist_2 a) as (a1,(a2,Ha)); rewrite Ha; try clear a Ha;
try (v2e a1; v2e a2)
| vec 3 =>
destruct (veq_exist_3 a) as (a1,(a2,(a3,Ha))); rewrite Ha; try clear a Ha;
try (v2e a1; v2e a2; v2e a3)
| vec 4 =>
destruct (veq_exist_4 a) as (a1,(a2,(a3,(a4,Ha)))); rewrite Ha; try clear a Ha;
try (v2e a1; v2e a2; v2e a3; v2e a4)
end.
Ltac v2e1 a :=
let a1 := fresh "a1" in
let a2 := fresh "a2" in
let a3 := fresh "a3" in
let a4 := fresh "a4" in
let Ha := fresh "Ha" in
match type of a with
| vec 2 =>
destruct (veq_exist_2 a) as (a1,(a2,Ha)); rewrite Ha; try clear a Ha
| vec 3 =>
destruct (veq_exist_3 a) as (a1,(a2,(a3,Ha))); rewrite Ha; try clear a Ha
| vec 4 =>
destruct (veq_exist_4 a) as (a1,(a2,(a3,(a4,Ha)))); rewrite Ha; try clear a Ha
end.
Section test.
Goal forall A (v : @vec A 3), v = v.
Proof. intros. v2e v. auto. Qed.
Goal forall A (v : @vec (@vec A 2) 3), v = v.
Proof. intros. v2e v. auto. Qed.
End test.
Section vec_specific.
Context {A} {Azero : A}.
Variable a1 a2 a3 a4 : A.
Definition mkvec0 : @vec A 0 := fun _ => Azero. Definition mkvec1 : @vec A 1 := l2v Azero [a1].
Definition mkvec2 : @vec A 2 := l2v Azero [a1;a2].
Definition mkvec3 : @vec A 3 := l2v Azero [a1;a2;a3].
Definition mkvec4 : @vec A 4 := l2v Azero [a1;a2;a3;a4].
End vec_specific.
Context {A} {Azero : A}.
Variable a1 a2 a3 a4 : A.
Definition mkvec0 : @vec A 0 := fun _ => Azero. Definition mkvec1 : @vec A 1 := l2v Azero [a1].
Definition mkvec2 : @vec A 2 := l2v Azero [a1;a2].
Definition mkvec3 : @vec A 3 := l2v Azero [a1;a2;a3].
Definition mkvec4 : @vec A 4 := l2v Azero [a1;a2;a3;a4].
End vec_specific.
Section vmap.
Context {A B : Type} (f : A -> B).
Definition vmap {n} (a : @vec A n) : @vec B n := fun i => f (a i).
Context {A B : Type} (f : A -> B).
Definition vmap {n} (a : @vec A n) : @vec B n := fun i => f (a i).
(vmap f a).i = f (a.i)
Lemma vnth_vmap : forall {n} (a : vec n) i, (vmap a).[i] = f (a.[i]).
Proof. intros. unfold vmap; auto. Qed.
End vmap.
Proof. intros. unfold vmap; auto. Qed.
End vmap.
Section vmap2.
Context {A B C : Type} (f : A -> B -> C).
Definition vmap2 {n} (a : @vec A n) (b : @vec B n) : @vec C n :=
fun i => f a.[i] b.[i].
Context {A B C : Type} (f : A -> B -> C).
Definition vmap2 {n} (a : @vec A n) (b : @vec B n) : @vec C n :=
fun i => f a.[i] b.[i].
(vmap2 f a b).i = f (a.i) (b.i)
Lemma vnth_vmap2 : forall {n} (a b : vec n) i, (vmap2 a b).[i] = f a.[i] b.[i].
Proof. intros. unfold vmap2; auto. Qed.
Lemma vmap2_eq_vmap : forall {n} (a b : vec n),
vmap2 a b = vmap (fun a => a) (fun i => f a.[i] b.[i]).
Proof. intros. auto. Qed.
End vmap2.
Proof. intros. unfold vmap2; auto. Qed.
Lemma vmap2_eq_vmap : forall {n} (a b : vec n),
vmap2 a b = vmap (fun a => a) (fun i => f a.[i] b.[i]).
Proof. intros. auto. Qed.
End vmap2.
vmap2 on same type
vmap2 f a b = vmap2 f b a
Lemma vmap2_comm : forall {n} (a b : vec n),
vmap2 Aadd a b = vmap2 Aadd b a.
Proof. intros. apply veq_iff_vnth; intros. unfold vmap2. agroup. Qed.
vmap2 Aadd a b = vmap2 Aadd b a.
Proof. intros. apply veq_iff_vnth; intros. unfold vmap2. agroup. Qed.
vmap2 f (vmap2 f a b) c = vmap2 f a (vmap2 f b c)
Lemma vmap2_assoc : forall {n} (a b c : vec n),
vmap2 Aadd (vmap2 Aadd a b) c = vmap2 Aadd a (vmap2 Aadd b c).
Proof. intros. apply veq_iff_vnth; intros. unfold vmap2. agroup. Qed.
End vmap2_sametype.
vmap2 Aadd (vmap2 Aadd a b) c = vmap2 Aadd a (vmap2 Aadd b c).
Proof. intros. apply veq_iff_vnth; intros. unfold vmap2. agroup. Qed.
End vmap2_sametype.
Section veye.
Context {A} (Azero Aone : A).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Notation vzero := (vzero 0).
Context {one_neq_zero : 1 <> 0}.
Definition veye {n} (i : 'I_n) : @vec A n :=
fun j => if i ??= j then 1 else 0.
Context {A} (Azero Aone : A).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Notation vzero := (vzero 0).
Context {one_neq_zero : 1 <> 0}.
Definition veye {n} (i : 'I_n) : @vec A n :=
fun j => if i ??= j then 1 else 0.
(veye i).i = 1
(veye i).j = 0
Lemma vnth_veye_neq : forall {n} i j, i <> j -> (@veye n i).[j] = 0.
Proof. intros. unfold veye. fin. Qed.
Proof. intros. unfold veye. fin. Qed.
veye <> 0
Lemma veye_neq0 : forall {n} i, @veye n i <> vzero.
Proof.
intros. intro. rewrite veq_iff_vnth in H. specialize (H i).
rewrite vnth_veye_eq, vnth_vzero in H. easy.
Qed.
End veye.
Proof.
intros. intro. rewrite veq_iff_vnth in H. specialize (H i).
rewrite vnth_veye_eq, vnth_vzero in H. easy.
Qed.
End veye.
Section veyes.
Context {A} (Azero Aone : A).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Notation vzero := (vzero 0).
Context {one_neq_zero : 1 <> 0}.
Definition veyes (n : nat) : @vec (@vec A n) n := fun i => veye Azero Aone i.
Context {A} (Azero Aone : A).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Notation vzero := (vzero 0).
Context {one_neq_zero : 1 <> 0}.
Definition veyes (n : nat) : @vec (@vec A n) n := fun i => veye Azero Aone i.
veyes.ii = 1
Lemma vnth_veyes_eq : forall {n} i, (veyes n).[i].[i] = 1.
Proof. intros. unfold veyes. apply vnth_veye_eq. Qed.
Proof. intros. unfold veyes. apply vnth_veye_eq. Qed.
veyes.ij = 0
Lemma vnth_veyes_neq : forall {n} i j, i <> j -> (veyes n).[i].[j] = 0.
Proof. intros. unfold veyes. apply vnth_veye_neq; auto. Qed.
End veyes.
Proof. intros. unfold veyes. apply vnth_veye_neq; auto. Qed.
End veyes.
Get head element
vhead a is = a.0
Lemma vhead_spec : forall {n} (a : @vec A (S n)), vhead a = (v2f Azero a) 0.
Proof.
intros. unfold vhead. erewrite nth_v2f. f_equal.
apply fin_eq_iff; auto. Unshelve. lia.
Qed.
Proof.
intros. unfold vhead. erewrite nth_v2f. f_equal.
apply fin_eq_iff; auto. Unshelve. lia.
Qed.
vhead a = a
Get tail element
vtail a = a.(n - 1)
Lemma vtail_spec : forall {n} (a : @vec A (S n)), vtail a = (v2f Azero a) n.
Proof.
intros. unfold vtail. erewrite nth_v2f. erewrite nat2finS_eq. f_equal.
Unshelve. lia.
Qed.
Proof.
intros. unfold vtail. erewrite nth_v2f. erewrite nat2finS_eq. f_equal.
Unshelve. lia.
Qed.
vtail a = a
Lemma vtail_eq : forall {n} (a : @vec A (S n)), vtail a = a.[#n].
Proof. auto. Qed.
End vhead_vtail.
Proof. auto. Qed.
End vhead_vtail.
Get head elements
i < m -> (vheadN a).i = (v2f a).i
Lemma vheadN_spec : forall {m n} (a : @vec A (m + n)) i,
i < m -> v2f Azero (vheadN a) i = (v2f Azero a) i.
Proof.
intros. unfold vheadN. erewrite !nth_v2f. f_equal.
apply fin_eq_iff; auto. Unshelve. all: try lia.
Qed.
i < m -> v2f Azero (vheadN a) i = (v2f Azero a) i.
Proof.
intros. unfold vheadN. erewrite !nth_v2f. f_equal.
apply fin_eq_iff; auto. Unshelve. all: try lia.
Qed.
(vheadN a).i = a.i
Lemma vnth_vheadN : forall {m n} (a : @vec A (m + n)) i,
(vheadN a).[i] = a.[fin2AddRangeR i].
Proof. auto. Qed.
(vheadN a).[i] = a.[fin2AddRangeR i].
Proof. auto. Qed.
Get tail elements
i < n -> (vtailN a).i = (v2f a).(m + i)
Lemma vtailN_spec : forall {m n} (a : @vec A (m + n)) i,
i < n -> v2f Azero (vtailN a) i = (v2f Azero a) (m + i).
Proof.
intros. unfold vtailN. erewrite !nth_v2f. f_equal.
apply fin_eq_iff; auto. Unshelve. all: try lia.
Qed.
i < n -> v2f Azero (vtailN a) i = (v2f Azero a) (m + i).
Proof.
intros. unfold vtailN. erewrite !nth_v2f. f_equal.
apply fin_eq_iff; auto. Unshelve. all: try lia.
Qed.
(vtailN a).i = a.(n + i)
Lemma vnth_vtailN : forall {m n} (a : @vec A (m + n)) i,
(vtailN a).[i] = a.[fin2AddRangeAddL i].
Proof. auto. Qed.
End vheadN_vtailN.
(vtailN a).[i] = a.[fin2AddRangeAddL i].
Proof. auto. Qed.
End vheadN_vtailN.
{i<n}, {j<n}, {k:=S j-i} -> {i+k < n}
Definition vslice_idx {n} (i j : 'I_n) (k : 'I_(S j - i)) : 'I_n.
refine (nat2fin (i + k) _).
pose proof (fin2nat_lt k). pose proof (fin2nat_lt j).
apply nat_lt_sub_imply_lt_add in H. rewrite commutative.
apply nat_ltS_lt_lt with (m := j); auto.
Defined.
refine (nat2fin (i + k) _).
pose proof (fin2nat_lt k). pose proof (fin2nat_lt j).
apply nat_lt_sub_imply_lt_add in H. rewrite commutative.
apply nat_ltS_lt_lt with (m := j); auto.
Defined.
Get a slice from vector `v` which contain elements from vj.
1. Include the i-th and j-th element
2. If i > i, then the result is `vec 0`
Definition vslice {n} (a : @vec A n) (i j : 'I_n) : @vec A (S j - i) :=
fun k => a.[vslice_idx i j k].
Lemma vnth_vslice : forall {n} (a : @vec A n) (i j : 'I_n) k,
(vslice a i j).[k] = a.[vslice_idx i j k].
Proof. intros. auto. Qed.
End vslice.
Section test.
Let n := 5.
Let a : vec n := l2v 9 [1;2;3;4;5].
End test.
fun k => a.[vslice_idx i j k].
Lemma vnth_vslice : forall {n} (a : @vec A n) (i j : 'I_n) k,
(vslice a i j).[k] = a.[vslice_idx i j k].
Proof. intros. auto. Qed.
End vslice.
Section test.
Let n := 5.
Let a : vec n := l2v 9 [1;2;3;4;5].
End test.
Set i-th element vector `a` with `x`
Definition vset {n} (a : @vec A n) (i : 'I_n) (x : A) : @vec A n :=
fun j => if j ??= i then x else a.[j].
fun j => if j ??= i then x else a.[j].
(vset a i x).i = x
Lemma vnth_vset_eq : forall {n} (a : @vec A n) (i : 'I_n) (x : A),
(vset a i x).[i] = x.
Proof. intros. unfold vset. fin. Qed.
(vset a i x).[i] = x.
Proof. intros. unfold vset. fin. Qed.
(vset a i x).j = a.j
Lemma vnth_vset_neq : forall {n} (a : @vec A n) (i j : 'I_n) (x : A),
i <> j -> (vset a i x).[j] = a.[j].
Proof. intros. unfold vset. fin. Qed.
End vset.
i <> j -> (vset a i x).[j] = a.[j].
Proof. intros. unfold vset. fin. Qed.
End vset.
Section vswap.
Context {A : Type}.
Definition vswap {n} (a : @vec A n) (i j : 'I_n) : @vec A n :=
fun k => if k ??= i
then a.[j]
else (if k ??= j then a.[i] else a.[k]).
Lemma vnth_vswap_i : forall {n} (a : @vec A n) (i j : 'I_n),
(vswap a i j).[i] = a.[j].
Proof. intros. unfold vswap. fin. Qed.
Lemma vnth_vswap_j : forall {n} (a : @vec A n) (i j : 'I_n),
(vswap a i j).[j] = a.[i].
Proof. intros. unfold vswap. fin. Qed.
Lemma vnth_vswap_other : forall {n} (a : @vec A n) (i j k : 'I_n),
i <> k -> j <> k -> (vswap a i j).[k] = a.[k].
Proof. intros. unfold vswap. fin. Qed.
Lemma vswap_vswap : forall {n} (a : @vec A n) (i j : 'I_n),
vswap (vswap a i j) j i = a.
Proof. intros. apply veq_iff_vnth; intros. unfold vswap. fin. Qed.
End vswap.
Context {A : Type}.
Definition vswap {n} (a : @vec A n) (i j : 'I_n) : @vec A n :=
fun k => if k ??= i
then a.[j]
else (if k ??= j then a.[i] else a.[k]).
Lemma vnth_vswap_i : forall {n} (a : @vec A n) (i j : 'I_n),
(vswap a i j).[i] = a.[j].
Proof. intros. unfold vswap. fin. Qed.
Lemma vnth_vswap_j : forall {n} (a : @vec A n) (i j : 'I_n),
(vswap a i j).[j] = a.[i].
Proof. intros. unfold vswap. fin. Qed.
Lemma vnth_vswap_other : forall {n} (a : @vec A n) (i j k : 'I_n),
i <> k -> j <> k -> (vswap a i j).[k] = a.[k].
Proof. intros. unfold vswap. fin. Qed.
Lemma vswap_vswap : forall {n} (a : @vec A n) (i j : 'I_n),
vswap (vswap a i j) j i = a.
Proof. intros. apply veq_iff_vnth; intros. unfold vswap. fin. Qed.
End vswap.
Section vinsert.
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
Definition vinsert {n} (a : @vec A n) (i : 'I_(S n)) (x : A) : @vec A (S n).
intros j. destruct (j ??< i) as [E|E].
- refine (a.[fPredRange j _]).
apply Nat.lt_le_trans with i; auto.
apply nat_lt_n_Sm_le.
apply fin2nat_lt.
- destruct (j ??= i) as [E1|E1].
+ apply x.
+ refine (a.[fPredRangeP j _]).
assert (j > i).
apply nat_ge_neq_imply_gt; auto. apply not_lt; auto.
apply Nat.lt_lt_0 in H; auto.
Defined.
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
Definition vinsert {n} (a : @vec A n) (i : 'I_(S n)) (x : A) : @vec A (S n).
intros j. destruct (j ??< i) as [E|E].
- refine (a.[fPredRange j _]).
apply Nat.lt_le_trans with i; auto.
apply nat_lt_n_Sm_le.
apply fin2nat_lt.
- destruct (j ??= i) as [E1|E1].
+ apply x.
+ refine (a.[fPredRangeP j _]).
assert (j > i).
apply nat_ge_neq_imply_gt; auto. apply not_lt; auto.
apply Nat.lt_lt_0 in H; auto.
Defined.
Another definition, which have simpler logic, but need `Azero`.
Definition vinsert' {n} (v : @vec A n) (i : 'I_(S n)) (x : A) : @vec A (S n) :=
f2v (fun j => if j ??< i
then (v2f v) j
else (if j ??= i
then x
else (v2f v) (pred j))).
Lemma vinsert_eq_vinsert' : forall {n} (a : @vec A n) (i : 'I_(S n)) (x : A),
vinsert a i x = vinsert' a i x.
Proof.
intros. apply veq_iff_vnth; intros j.
unfold vinsert, vinsert',f2v,v2f,fPredRange, fPredRangeP.
destruct i as [i Hi], j as [j Hj]; simpl. fin.
Qed.
f2v (fun j => if j ??< i
then (v2f v) j
else (if j ??= i
then x
else (v2f v) (pred j))).
Lemma vinsert_eq_vinsert' : forall {n} (a : @vec A n) (i : 'I_(S n)) (x : A),
vinsert a i x = vinsert' a i x.
Proof.
intros. apply veq_iff_vnth; intros j.
unfold vinsert, vinsert',f2v,v2f,fPredRange, fPredRangeP.
destruct i as [i Hi], j as [j Hj]; simpl. fin.
Qed.
j < i -> (v2f (vinsert a i x)) j = (v2f a) i
Lemma vinsert_spec_lt : forall {n} (a : @vec A n) (i : 'I_(S n)) (x : A) (j : nat),
j < i -> v2f (vinsert a i x) j = v2f a j.
Proof.
intros. rewrite vinsert_eq_vinsert'. pose proof (fin2nat_lt i).
unfold vinsert',v2f,f2v. fin.
Qed.
j < i -> v2f (vinsert a i x) j = v2f a j.
Proof.
intros. rewrite vinsert_eq_vinsert'. pose proof (fin2nat_lt i).
unfold vinsert',v2f,f2v. fin.
Qed.
(v2f (vinsert a i x)) i = x
Lemma vinsert_spec_eq : forall {n} (a : @vec A n) (i : 'I_(S n)) (x : A),
v2f (vinsert a i x) i = x.
Proof.
intros. rewrite vinsert_eq_vinsert'.
pose proof (fin2nat_lt i). unfold vinsert',v2f,f2v. fin.
Qed.
v2f (vinsert a i x) i = x.
Proof.
intros. rewrite vinsert_eq_vinsert'.
pose proof (fin2nat_lt i). unfold vinsert',v2f,f2v. fin.
Qed.
i < j -> 0 < j -> j < S n -> (v2f (vinsert a i x)) j = (v2f a) (pred i)
Lemma vinsert_spec_gt : forall {n} (a : @vec A n) (i : 'I_(S n)) (x : A) (j : nat),
i < j -> 0 < j -> j < S n -> v2f (vinsert a i x) j = v2f a (pred j).
Proof.
intros. rewrite vinsert_eq_vinsert'. pose proof (fin2nat_lt i).
unfold vinsert',v2f,f2v. fin.
Qed.
i < j -> 0 < j -> j < S n -> v2f (vinsert a i x) j = v2f a (pred j).
Proof.
intros. rewrite vinsert_eq_vinsert'. pose proof (fin2nat_lt i).
unfold vinsert',v2f,f2v. fin.
Qed.
Lemma vnth_vinsert_lt :
forall {n} (a : @vec A n) (i j : 'I_(S n)) x (H : j < i),
(vinsert a i x).[j] =
a.[fPredRange j (nat_lt_ltS_lt _ _ _ H (fin2nat_lt _))].
Proof.
intros. pose proof (vinsert_spec_lt a i x j H).
erewrite !nth_v2f in H0. fin. rewrite H0. f_equal. apply fin_eq_iff; auto.
Unshelve. fin. pose proof (fin2nat_lt i). lia.
Qed.
forall {n} (a : @vec A n) (i j : 'I_(S n)) x (H : j < i),
(vinsert a i x).[j] =
a.[fPredRange j (nat_lt_ltS_lt _ _ _ H (fin2nat_lt _))].
Proof.
intros. pose proof (vinsert_spec_lt a i x j H).
erewrite !nth_v2f in H0. fin. rewrite H0. f_equal. apply fin_eq_iff; auto.
Unshelve. fin. pose proof (fin2nat_lt i). lia.
Qed.
(vinsert a i x).i = a
Lemma vnth_vinsert_eq : forall {n} (a : @vec A n) (i : 'I_(S n)) x,
(vinsert a i x).[i] = x.
Proof.
intros. pose proof (vinsert_spec_eq a i x).
pose proof (fin2nat_lt i). unfold v2f in *. fin.
Qed.
(vinsert a i x).[i] = x.
Proof.
intros. pose proof (vinsert_spec_eq a i x).
pose proof (fin2nat_lt i). unfold v2f in *. fin.
Qed.
0 < j -> (vinsert a i x).j = a.(pred j)
Lemma vnth_vinsert_gt :
forall {n} (a : @vec A n) (i j : 'I_(S n)) x (H : 0 < j),
i < j -> (vinsert a i x).[j] = a.[fPredRangeP j H].
Proof.
intros.
pose proof (vinsert_spec_gt a i x j H0 H (fin2nat_lt _)).
erewrite !nth_v2f in H1. fin. rewrite H1. fin. Unshelve. fin.
Qed.
forall {n} (a : @vec A n) (i j : 'I_(S n)) x (H : 0 < j),
i < j -> (vinsert a i x).[j] = a.[fPredRangeP j H].
Proof.
intros.
pose proof (vinsert_spec_gt a i x j H0 H (fin2nat_lt _)).
erewrite !nth_v2f in H1. fin. rewrite H1. fin. Unshelve. fin.
Qed.
Invert 0 into vzero get vzero
Lemma vinsert_vzero_eq0 : forall {n} i, @vinsert n vzero i Azero = vzero.
Proof.
intros. rewrite vinsert_eq_vinsert'.
apply veq_iff_vnth; intros j. rewrite vnth_vzero.
destruct i as [i Hi], j as [j Hj].
unfold vinsert',f2v,v2f; simpl. fin.
Qed.
Proof.
intros. rewrite vinsert_eq_vinsert'.
apply veq_iff_vnth; intros j. rewrite vnth_vzero.
destruct i as [i Hi], j as [j Hj].
unfold vinsert',f2v,v2f; simpl. fin.
Qed.
If insert x into vector a get vzero, then x is 0
Lemma vinsert_eq0_imply_x0 {AeqDec : Dec (@eq A)} : forall {n} (a : @vec A n) i x,
vinsert a i x = vzero -> x = Azero.
Proof.
intros. rewrite veq_iff_vnth in *. specialize (H i).
rewrite vnth_vzero in H. rewrite <- H.
symmetry. apply vnth_vinsert_eq.
Qed.
vinsert a i x = vzero -> x = Azero.
Proof.
intros. rewrite veq_iff_vnth in *. specialize (H i).
rewrite vnth_vzero in H. rewrite <- H.
symmetry. apply vnth_vinsert_eq.
Qed.
If insert x into vector a get vzero, then a is vzero
Lemma vinsert_eq0_imply_v0 {AeqDec : Dec (@eq A)} : forall {n} (a : @vec A n) i x,
vinsert a i x = vzero -> a = vzero.
Proof.
intros.
pose proof (vinsert_eq0_imply_x0 a i x H). subst.
rewrite !veq_iff_vnth in *; intros j.
destruct (j ??< i).
- specialize (H (fSuccRange j)). erewrite vnth_vinsert_lt in H; fin.
- specialize (H (fSuccRangeS j)). erewrite vnth_vinsert_gt in H; fin.
Unshelve. fin. fin.
Qed.
vinsert a i x = vzero -> a = vzero.
Proof.
intros.
pose proof (vinsert_eq0_imply_x0 a i x H). subst.
rewrite !veq_iff_vnth in *; intros j.
destruct (j ??< i).
- specialize (H (fSuccRange j)). erewrite vnth_vinsert_lt in H; fin.
- specialize (H (fSuccRangeS j)). erewrite vnth_vinsert_gt in H; fin.
Unshelve. fin. fin.
Qed.
Insert x into vector a get vzero, iff a is vzero and x is 0
Lemma vinsert_eq0_iff {AeqDec : Dec (@eq A)} : forall {n} (a : @vec A n) i x,
vinsert a i x = vzero <-> (a = vzero /\ x = Azero).
Proof.
simp.
- apply vinsert_eq0_imply_v0 in H; auto.
- apply vinsert_eq0_imply_x0 in H; auto.
- subst. apply vinsert_vzero_eq0.
Qed.
vinsert a i x = vzero <-> (a = vzero /\ x = Azero).
Proof.
simp.
- apply vinsert_eq0_imply_v0 in H; auto.
- apply vinsert_eq0_imply_x0 in H; auto.
- subst. apply vinsert_vzero_eq0.
Qed.
Insert x into vector a is not vzero, iff a is not vzero or x is 0
Lemma vinsert_neq0_iff {AeqDec : Dec (@eq A)} : forall {n} (a : @vec A n) i x,
vinsert a i x <> vzero <-> (a <> vzero \/ x <> Azero).
Proof. intros. rewrite vinsert_eq0_iff. tauto. Qed.
End vinsert.
Section test.
Let n := 5.
Let a : vec n := l2v 9 [1;2;3;4;5].
End test.
vinsert a i x <> vzero <-> (a <> vzero \/ x <> Azero).
Proof. intros. rewrite vinsert_eq0_iff. tauto. Qed.
End vinsert.
Section test.
Let n := 5.
Let a : vec n := l2v 9 [1;2;3;4;5].
End test.
Removes i-th element from vector `a`
Definition vremove {n} (a : @vec A (S n)) (i : 'I_(S n)) : @vec A n :=
fun j => if j ??< i
then a (fSuccRange j)
else a (fSuccRangeS j).
Definition vremove' {n} (a : @vec A (S n)) (i : 'I_(S n)) : @vec A n :=
f2v (fun j => if j ??< i then v2f a j else v2f a (S j)).
Lemma vremove_eq_vremove' : forall {n} (a : @vec A (S n)) (i : 'I_(S n)),
vremove a i = vremove' a i.
Proof.
intros. apply veq_iff_vnth; intros j.
unfold vremove, vremove', f2v, v2f.
unfold fSuccRange, fSuccRangeS.
destruct i as [i Hi], j as [j Hj]; simpl. fin.
erewrite nat2finS_eq. apply fin_eq_iff; auto. Unshelve. auto.
Qed.
fun j => if j ??< i
then a (fSuccRange j)
else a (fSuccRangeS j).
Definition vremove' {n} (a : @vec A (S n)) (i : 'I_(S n)) : @vec A n :=
f2v (fun j => if j ??< i then v2f a j else v2f a (S j)).
Lemma vremove_eq_vremove' : forall {n} (a : @vec A (S n)) (i : 'I_(S n)),
vremove a i = vremove' a i.
Proof.
intros. apply veq_iff_vnth; intros j.
unfold vremove, vremove', f2v, v2f.
unfold fSuccRange, fSuccRangeS.
destruct i as [i Hi], j as [j Hj]; simpl. fin.
erewrite nat2finS_eq. apply fin_eq_iff; auto. Unshelve. auto.
Qed.
j < i -> (vremove a i).j = v.j
Lemma vremove_spec_lt : forall {n} (a : @vec A (S n)) (i : 'I_(S n)) (j : nat),
j < i -> v2f (vremove a i) j = v2f a j.
Proof.
intros. rewrite vremove_eq_vremove'. unfold v2f,vremove',f2v.
destruct i as [i Hi]; simpl in *. fin.
Qed.
j < i -> v2f (vremove a i) j = v2f a j.
Proof.
intros. rewrite vremove_eq_vremove'. unfold v2f,vremove',f2v.
destruct i as [i Hi]; simpl in *. fin.
Qed.
i <= j -> j < n -> (vremove a i).j = v.(S j)
Lemma vremove_spec_ge : forall {n} (a : @vec A (S n)) (i : 'I_(S n)) (j : nat),
i <= j -> j < n -> v2f (vremove a i) j = v2f a (S j).
Proof.
intros. rewrite vremove_eq_vremove'. unfold vremove',f2v,v2f.
destruct i as [i Hi]; simpl in *. fin.
Qed.
i <= j -> j < n -> v2f (vremove a i) j = v2f a (S j).
Proof.
intros. rewrite vremove_eq_vremove'. unfold vremove',f2v,v2f.
destruct i as [i Hi]; simpl in *. fin.
Qed.
j < i -> (vremove a i).j = a.j
Lemma vnth_vremove_lt : forall {n} (a : @vec A (S n)) (i : 'I_(S n)) (j : 'I_n),
j < i -> (vremove a i).[j] = v2f a j.
Proof.
intros. rewrite vremove_eq_vremove'. unfold vremove',f2v,v2f.
destruct i as [i Hi], j as [j Hj]; simpl in *. fin.
Qed.
j < i -> (vremove a i).[j] = v2f a j.
Proof.
intros. rewrite vremove_eq_vremove'. unfold vremove',f2v,v2f.
destruct i as [i Hi], j as [j Hj]; simpl in *. fin.
Qed.
i <= j -> j < n -> (vremove a i).j = a.(S j)
Lemma vnth_vremove_ge : forall {n} (a : @vec A (S n)) (i : 'I_(S n)) (j : 'I_n),
i <= j -> j < n -> (vremove a i).[j] = v2f a (S j).
Proof.
intros. rewrite vremove_eq_vremove'. unfold vremove',f2v,v2f.
destruct i as [i Hi], j as [j Hj]; simpl in *. fin.
Qed.
i <= j -> j < n -> (vremove a i).[j] = v2f a (S j).
Proof.
intros. rewrite vremove_eq_vremove'. unfold vremove',f2v,v2f.
destruct i as [i Hi], j as [j Hj]; simpl in *. fin.
Qed.
vremove (vinsert a i x) i = a
Lemma vremove_vinsert : forall {n} (a : @vec A n) (i : 'I_(S n)) (x : A),
vremove (vinsert a i x) i = a.
Proof.
intros. rewrite vremove_eq_vremove', (vinsert_eq_vinsert' (Azero:=Azero)).
apply veq_iff_vnth; intros j.
destruct i as [i Hi], j as [j Hj].
unfold vremove',vinsert',f2v,v2f; simpl in *. fin.
Qed.
vremove (vinsert a i x) i = a.
Proof.
intros. rewrite vremove_eq_vremove', (vinsert_eq_vinsert' (Azero:=Azero)).
apply veq_iff_vnth; intros j.
destruct i as [i Hi], j as [j Hj].
unfold vremove',vinsert',f2v,v2f; simpl in *. fin.
Qed.
vinsert (vremove a i) (a.i) = a
Lemma vinsert_vremove : forall {n} (a : @vec A (S n)) (i : 'I_(S n)),
vinsert (vremove a i) i (a.[i]) = a.
Proof.
intros. rewrite vremove_eq_vremove', (vinsert_eq_vinsert' (Azero:=Azero)).
apply veq_iff_vnth; intros j.
destruct i as [i Hi], j as [j Hj].
unfold vremove',vinsert',f2v,v2f; simpl in *. fin.
Qed.
End vremove.
Section vmap_vinsert_vremove.
Context {A B C : Type} {Azero : A} {Bzero : B} {Czero : C}.
Context (f1 : A -> B).
Context (f2 : A -> B -> C).
vinsert (vremove a i) i (a.[i]) = a.
Proof.
intros. rewrite vremove_eq_vremove', (vinsert_eq_vinsert' (Azero:=Azero)).
apply veq_iff_vnth; intros j.
destruct i as [i Hi], j as [j Hj].
unfold vremove',vinsert',f2v,v2f; simpl in *. fin.
Qed.
End vremove.
Section vmap_vinsert_vremove.
Context {A B C : Type} {Azero : A} {Bzero : B} {Czero : C}.
Context (f1 : A -> B).
Context (f2 : A -> B -> C).
vmap f (vremove a i) = vremove (vmap f v) i
Lemma vmap_vremove : forall {n} (a : @vec A (S n)) i,
vmap f1 (vremove a i) = vremove (vmap f1 a) i.
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap.
pose proof (fin2nat_lt i). pose proof (fin2nat_lt j).
destruct (j ??< i).
- rewrite (vnth_vremove_lt (Azero:=Azero)); auto.
rewrite (vnth_vremove_lt (Azero:=Bzero)); auto.
erewrite !nth_v2f. unfold vmap. auto.
- rewrite (vnth_vremove_ge (Azero:=Azero)); try lia.
rewrite (vnth_vremove_ge (Azero:=Bzero)); try lia.
erewrite !nth_v2f. unfold vmap. auto.
Unshelve. lia. lia.
Qed.
vmap f1 (vremove a i) = vremove (vmap f1 a) i.
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap.
pose proof (fin2nat_lt i). pose proof (fin2nat_lt j).
destruct (j ??< i).
- rewrite (vnth_vremove_lt (Azero:=Azero)); auto.
rewrite (vnth_vremove_lt (Azero:=Bzero)); auto.
erewrite !nth_v2f. unfold vmap. auto.
- rewrite (vnth_vremove_ge (Azero:=Azero)); try lia.
rewrite (vnth_vremove_ge (Azero:=Bzero)); try lia.
erewrite !nth_v2f. unfold vmap. auto.
Unshelve. lia. lia.
Qed.
vmap2 f (vremove a i) (vremove b i) = vremove (vmap2 a b) i
Lemma vmap2_vremove_vremove : forall {n} (a : @vec A (S n)) (b : @vec B (S n)) i,
vmap2 f2 (vremove a i) (vremove b i) = vremove (vmap2 f2 a b) i.
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap2.
pose proof (fin2nat_lt i). pose proof (fin2nat_lt j).
destruct (j ??< i).
- rewrite (vnth_vremove_lt (Azero:=Azero)); auto.
rewrite (vnth_vremove_lt (Azero:=Bzero)); auto.
rewrite (vnth_vremove_lt (Azero:=Czero)); auto.
erewrite !nth_v2f. rewrite vnth_vmap2. auto.
- rewrite (vnth_vremove_ge (Azero:=Azero)); try lia.
rewrite (vnth_vremove_ge (Azero:=Bzero)); try lia.
rewrite (vnth_vremove_ge (Azero:=Czero)); try lia.
erewrite !nth_v2f. rewrite vnth_vmap2. auto.
Unshelve. lia. lia.
Qed.
vmap2 f2 (vremove a i) (vremove b i) = vremove (vmap2 f2 a b) i.
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap2.
pose proof (fin2nat_lt i). pose proof (fin2nat_lt j).
destruct (j ??< i).
- rewrite (vnth_vremove_lt (Azero:=Azero)); auto.
rewrite (vnth_vremove_lt (Azero:=Bzero)); auto.
rewrite (vnth_vremove_lt (Azero:=Czero)); auto.
erewrite !nth_v2f. rewrite vnth_vmap2. auto.
- rewrite (vnth_vremove_ge (Azero:=Azero)); try lia.
rewrite (vnth_vremove_ge (Azero:=Bzero)); try lia.
rewrite (vnth_vremove_ge (Azero:=Czero)); try lia.
erewrite !nth_v2f. rewrite vnth_vmap2. auto.
Unshelve. lia. lia.
Qed.
vmap2 (vinsert a i x) b = vinsert (vmap2 a (vremove b i)) i (f x b.i)
Lemma vmap2_vinsert_l : forall {n} (a : @vec A n) (b : @vec B (S n)) i (x : A),
vmap2 f2 (vinsert a i x) b =
vinsert (vmap2 f2 a (vremove b i)) i (f2 x (b.[i])).
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap2.
destruct (j ??< i) as [E|E].
- rewrite (vnth_vinsert_lt (Azero:=Azero)) with (H:=E).
rewrite (vnth_vinsert_lt (Azero:=Czero)) with (H:=E).
rewrite vnth_vmap2. fin.
rewrite (vnth_vremove_lt (Azero:=Bzero)); fin.
erewrite nth_v2f with (H:=fin2nat_lt _); fin.
- destruct (j ??= i) as [E1|E1]; fin.
+ apply fin2nat_eq_iff in E1; rewrite E1.
rewrite (vnth_vinsert_eq (Azero:=Azero)).
rewrite (vnth_vinsert_eq (Azero:=Czero)). auto.
+ assert (i < j) by lia.
assert (0 < j) by lia.
rewrite (vnth_vinsert_gt (Azero:=Azero)) with (H:=H0); auto.
rewrite (vnth_vinsert_gt (Azero:=Czero)) with (H:=H0); auto.
rewrite vnth_vmap2. fin.
rewrite (vnth_vremove_ge (Azero:=Bzero)); fin.
* assert (S (pred j) < S n).
rewrite Nat.succ_pred; try lia. apply fin2nat_lt.
rewrite nth_v2f with (H:=H1). fin. destruct j. fin.
* pose proof (fin2nat_lt j). lia.
Qed.
vmap2 f2 (vinsert a i x) b =
vinsert (vmap2 f2 a (vremove b i)) i (f2 x (b.[i])).
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap2.
destruct (j ??< i) as [E|E].
- rewrite (vnth_vinsert_lt (Azero:=Azero)) with (H:=E).
rewrite (vnth_vinsert_lt (Azero:=Czero)) with (H:=E).
rewrite vnth_vmap2. fin.
rewrite (vnth_vremove_lt (Azero:=Bzero)); fin.
erewrite nth_v2f with (H:=fin2nat_lt _); fin.
- destruct (j ??= i) as [E1|E1]; fin.
+ apply fin2nat_eq_iff in E1; rewrite E1.
rewrite (vnth_vinsert_eq (Azero:=Azero)).
rewrite (vnth_vinsert_eq (Azero:=Czero)). auto.
+ assert (i < j) by lia.
assert (0 < j) by lia.
rewrite (vnth_vinsert_gt (Azero:=Azero)) with (H:=H0); auto.
rewrite (vnth_vinsert_gt (Azero:=Czero)) with (H:=H0); auto.
rewrite vnth_vmap2. fin.
rewrite (vnth_vremove_ge (Azero:=Bzero)); fin.
* assert (S (pred j) < S n).
rewrite Nat.succ_pred; try lia. apply fin2nat_lt.
rewrite nth_v2f with (H:=H1). fin. destruct j. fin.
* pose proof (fin2nat_lt j). lia.
Qed.
vmap2 a (vinsert b i x) = vinsert (vmap2 (vremove a i) b) i (f a.i x)
Lemma vmap2_vinsert_r : forall {n} (a : @vec A (S n)) (b : @vec B n) i (x : B),
vmap2 f2 a (vinsert b i x) =
vinsert (vmap2 f2 (vremove a i) b) i (f2 (a.[i]) x).
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap2.
destruct (j ??< i) as [E|E].
- assert (j < n). pose proof (fin2nat_lt i). lia.
rewrite (vnth_vinsert_lt (Azero:=Bzero)) with (H:=E).
rewrite (vnth_vinsert_lt (Azero:=Czero)) with (H:=E).
rewrite vnth_vmap2. f_equal.
rewrite (vnth_vremove_lt (Azero:=Azero)); auto. simpl.
rewrite nth_v2f with (H:=fin2nat_lt _). fin.
- destruct (j ??= i) as [E1|E1].
+ apply fin2nat_eq_iff in E1; rewrite E1.
rewrite (@vnth_vinsert_eq _ Bzero).
rewrite (@vnth_vinsert_eq _ Czero). auto.
+ assert (i < j) by lia.
assert (0 < j) by lia.
rewrite (vnth_vinsert_gt (Azero:=Bzero)) with (H:=H0); auto.
rewrite (vnth_vinsert_gt (Azero:=Czero)) with (H:=H0); auto.
rewrite vnth_vmap2. f_equal.
rewrite (vnth_vremove_ge (Azero:=Azero)); fin.
* assert (S (pred j) < S n).
rewrite Nat.succ_pred; try lia. apply fin2nat_lt.
rewrite nth_v2f with (H:=H1). fin. destruct j. fin.
* pose proof (fin2nat_lt j). lia.
Qed.
End vmap_vinsert_vremove.
vmap2 f2 a (vinsert b i x) =
vinsert (vmap2 f2 (vremove a i) b) i (f2 (a.[i]) x).
Proof.
intros. apply veq_iff_vnth; intros j. rewrite vnth_vmap2.
destruct (j ??< i) as [E|E].
- assert (j < n). pose proof (fin2nat_lt i). lia.
rewrite (vnth_vinsert_lt (Azero:=Bzero)) with (H:=E).
rewrite (vnth_vinsert_lt (Azero:=Czero)) with (H:=E).
rewrite vnth_vmap2. f_equal.
rewrite (vnth_vremove_lt (Azero:=Azero)); auto. simpl.
rewrite nth_v2f with (H:=fin2nat_lt _). fin.
- destruct (j ??= i) as [E1|E1].
+ apply fin2nat_eq_iff in E1; rewrite E1.
rewrite (@vnth_vinsert_eq _ Bzero).
rewrite (@vnth_vinsert_eq _ Czero). auto.
+ assert (i < j) by lia.
assert (0 < j) by lia.
rewrite (vnth_vinsert_gt (Azero:=Bzero)) with (H:=H0); auto.
rewrite (vnth_vinsert_gt (Azero:=Czero)) with (H:=H0); auto.
rewrite vnth_vmap2. f_equal.
rewrite (vnth_vremove_ge (Azero:=Azero)); fin.
* assert (S (pred j) < S n).
rewrite Nat.succ_pred; try lia. apply fin2nat_lt.
rewrite nth_v2f with (H:=H1). fin. destruct j. fin.
* pose proof (fin2nat_lt j). lia.
Qed.
End vmap_vinsert_vremove.
Section vremoveH_vremoveT.
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
i < n -> (vremoveH a).i = v.(S i)
Lemma vremoveH_spec : forall {n} (a : @vec A (S n)) (i : nat),
i < n -> v2f (vremoveH a) i = v2f a (S i).
Proof.
intros. unfold vremoveH,v2f. fin.
Qed.
i < n -> v2f (vremoveH a) i = v2f a (S i).
Proof.
intros. unfold vremoveH,v2f. fin.
Qed.
(vremoveH a).i = a.(S i)
Lemma vnth_vremoveH : forall {n} (a : @vec A (S n)) (i : 'I_n),
(vremoveH a).[i] = a.[fSuccRangeS i].
Proof. intros. unfold vremoveH. auto. Qed.
(vremoveH a).[i] = a.[fSuccRangeS i].
Proof. intros. unfold vremoveH. auto. Qed.
a <> 0 -> vhead a = 0 -> vremoveH a <> 0
Lemma vremoveH_neq0_if : forall {n} (a : @vec A (S n)),
a <> vzero -> vhead a = Azero -> vremoveH a <> vzero.
Proof.
intros. intro. destruct H. apply veq_iff_vnth; intros.
rewrite veq_iff_vnth in H1. unfold vremoveH in H1. rewrite vhead_eq in H0.
destruct (i ??= 0) as [E|E].
- rewrite vnth_vzero. destruct i; simpl in *; subst.
f_equal. apply fin_eq_iff; auto.
- assert (0 < i). pose proof (fin2nat_lt i). lia.
specialize (H1 (fPredRangeP i H)).
rewrite fSuccRangeS_fPredRangeP in H1. rewrite H1. cbv. auto.
Qed.
a <> vzero -> vhead a = Azero -> vremoveH a <> vzero.
Proof.
intros. intro. destruct H. apply veq_iff_vnth; intros.
rewrite veq_iff_vnth in H1. unfold vremoveH in H1. rewrite vhead_eq in H0.
destruct (i ??= 0) as [E|E].
- rewrite vnth_vzero. destruct i; simpl in *; subst.
f_equal. apply fin_eq_iff; auto.
- assert (0 < i). pose proof (fin2nat_lt i). lia.
specialize (H1 (fPredRangeP i H)).
rewrite fSuccRangeS_fPredRangeP in H1. rewrite H1. cbv. auto.
Qed.
vremoveH also hold, if hold for all elements
Lemma vremoveH_hold : forall {n} (a : @vec A (S n)) (P : A -> Prop),
(forall i, P (a.[i])) -> (forall i, P ((vremoveH a).[i])).
Proof. intros. unfold vremoveH. auto. Qed.
(forall i, P (a.[i])) -> (forall i, P ((vremoveH a).[i])).
Proof. intros. unfold vremoveH. auto. Qed.
i < n -> (vremoveT a).i = a.i
Lemma vremoveT_spec : forall {n} (a : @vec A (S n)) (i : nat),
i < n -> v2f (vremoveT a) i = v2f a i.
Proof.
intros. unfold vremoveT,v2f. fin.
erewrite fSuccRange_nat2fin. apply fin_eq_iff; auto.
Unshelve. auto.
Qed.
i < n -> v2f (vremoveT a) i = v2f a i.
Proof.
intros. unfold vremoveT,v2f. fin.
erewrite fSuccRange_nat2fin. apply fin_eq_iff; auto.
Unshelve. auto.
Qed.
(vremoveT a).i = a.i
Lemma vnth_vremoveT : forall {n} (a : @vec A (S n)) (i : 'I_n),
(vremoveT a).[i] = a.[fSuccRange i].
Proof. intros. unfold vremoveT. auto. Qed.
(vremoveT a).[i] = a.[fSuccRange i].
Proof. intros. unfold vremoveT. auto. Qed.
v <> 0 -> vtail v = 0 -> vremoveT v <> 0
Lemma vremoveT_neq0_if : forall {n} (a : @vec A (S n)),
a <> vzero -> vtail a = Azero -> vremoveT a <> vzero.
Proof.
intros. intro. destruct H. apply veq_iff_vnth; intros.
rewrite veq_iff_vnth in H1. unfold vremoveT in H1.
rewrite vtail_eq in H0.
destruct (i ??= n) as [E|E].
- destruct i; simpl in *; subst. rewrite vnth_vzero. f_equal.
erewrite nat2finS_eq. apply fin_eq_iff; auto.
- assert (i < n). pose proof (fin2nat_lt i). lia.
specialize (H1 (fPredRange i H)).
rewrite fSuccRange_fPredRange in H1. rewrite H1. cbv. auto.
Unshelve. auto.
Qed.
a <> vzero -> vtail a = Azero -> vremoveT a <> vzero.
Proof.
intros. intro. destruct H. apply veq_iff_vnth; intros.
rewrite veq_iff_vnth in H1. unfold vremoveT in H1.
rewrite vtail_eq in H0.
destruct (i ??= n) as [E|E].
- destruct i; simpl in *; subst. rewrite vnth_vzero. f_equal.
erewrite nat2finS_eq. apply fin_eq_iff; auto.
- assert (i < n). pose proof (fin2nat_lt i). lia.
specialize (H1 (fPredRange i H)).
rewrite fSuccRange_fPredRange in H1. rewrite H1. cbv. auto.
Unshelve. auto.
Qed.
vremoveT also hold, if hold for all elements
Lemma vremoveT_hold : forall {n} (a : @vec A (S n)) (P : A -> Prop),
(forall i, P (a.[i])) -> (forall i, P ((vremoveT a).[i])).
Proof. intros. unfold vremoveT. auto. Qed.
End vremoveH_vremoveT.
(forall i, P (a.[i])) -> (forall i, P ((vremoveT a).[i])).
Proof. intros. unfold vremoveT. auto. Qed.
End vremoveH_vremoveT.
Section vremoveHN_vremoveTN.
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
i < n -> (vremoveHN a).i = a.(m + i)
Lemma vremoveHN_spec : forall {m n} (a : @vec A (m + n)) (i : nat),
i < n -> v2f (vremoveHN a) i = v2f a (m + i).
Proof.
intros. unfold vremoveHN. erewrite !nth_v2f. f_equal.
apply fin2nat_imply_nat2fin; simpl. auto.
Unshelve. all: lia.
Qed.
i < n -> v2f (vremoveHN a) i = v2f a (m + i).
Proof.
intros. unfold vremoveHN. erewrite !nth_v2f. f_equal.
apply fin2nat_imply_nat2fin; simpl. auto.
Unshelve. all: lia.
Qed.
(vremoveHN a).i = a.(m + i)
Lemma vnth_vremoveHN : forall {m n} (a : @vec A (m + n)) (i : 'I_n),
(vremoveHN a).[i] = a.[fin2AddRangeAddL i].
Proof. auto. Qed.
(vremoveHN a).[i] = a.[fin2AddRangeAddL i].
Proof. auto. Qed.
a <> 0 -> vheadN v = 0 -> vremoveHN a <> 0
Lemma vremoveHN_neq0_if : forall {m n} (a : @vec A (m + n)),
a <> vzero -> vheadN a = vzero -> vremoveHN a <> vzero.
Proof.
intros. intro.
rewrite veq_iff_vnth in H0. unfold vheadN in H0.
rewrite veq_iff_vnth in H1. unfold vremoveHN in H1.
destruct H. apply veq_iff_vnth; intros.
destruct (m ??<= i) as [E|E].
- specialize (H1 (fin2AddRangeAddL' i E)).
rewrite fin2AddRangeAddL_fin2AddRangeAddL' in H1. rewrite H1. cbv. auto.
- assert (i < m). lia.
specialize (H0 (fin2AddRangeR' i H)).
rewrite fin2AddRangeR_fin2AddRangeR' in H0. rewrite H0. cbv. auto.
Qed.
a <> vzero -> vheadN a = vzero -> vremoveHN a <> vzero.
Proof.
intros. intro.
rewrite veq_iff_vnth in H0. unfold vheadN in H0.
rewrite veq_iff_vnth in H1. unfold vremoveHN in H1.
destruct H. apply veq_iff_vnth; intros.
destruct (m ??<= i) as [E|E].
- specialize (H1 (fin2AddRangeAddL' i E)).
rewrite fin2AddRangeAddL_fin2AddRangeAddL' in H1. rewrite H1. cbv. auto.
- assert (i < m). lia.
specialize (H0 (fin2AddRangeR' i H)).
rewrite fin2AddRangeR_fin2AddRangeR' in H0. rewrite H0. cbv. auto.
Qed.
i < n -> (vremoveTN a).i = a.i
Lemma vremoveTN_spec : forall {m n} (a : @vec A (m + n)) (i : nat),
i < m -> v2f (vremoveTN a) i = v2f a i.
Proof.
intros. unfold vremoveTN,v2f. fin.
Qed.
i < m -> v2f (vremoveTN a) i = v2f a i.
Proof.
intros. unfold vremoveTN,v2f. fin.
Qed.
(vremoveTN a).i = a.i
Lemma vnth_vremoveTN : forall {m n} (a : @vec A (m + n)) (i : 'I_m),
(vremoveTN a).[i] = a.[fin2AddRangeR i].
Proof. intros. auto. Qed.
(vremoveTN a).[i] = a.[fin2AddRangeR i].
Proof. intros. auto. Qed.
a <> 0 -> vtailN v = 0 -> vremoveTN a <> 0
Lemma vremoveTN_neq0_if : forall {m n} (a : @vec A (m + n)),
a <> vzero -> vtailN a = vzero -> vremoveTN a <> vzero.
Proof.
intros. intro.
rewrite veq_iff_vnth in H0. unfold vtailN in H0.
rewrite veq_iff_vnth in H1. unfold vremoveTN in H1.
destruct H. apply veq_iff_vnth; intros.
destruct (m ??<= i) as [E|E].
- specialize (H0 (fin2AddRangeAddL' i E)).
rewrite fin2AddRangeAddL_fin2AddRangeAddL' in H0. rewrite H0. cbv. auto.
- assert (i < m). lia.
specialize (H1 (fin2AddRangeR' i H)).
rewrite fin2AddRangeR_fin2AddRangeR' in H1. rewrite H1. cbv. auto.
Qed.
End vremoveHN_vremoveTN.
a <> vzero -> vtailN a = vzero -> vremoveTN a <> vzero.
Proof.
intros. intro.
rewrite veq_iff_vnth in H0. unfold vtailN in H0.
rewrite veq_iff_vnth in H1. unfold vremoveTN in H1.
destruct H. apply veq_iff_vnth; intros.
destruct (m ??<= i) as [E|E].
- specialize (H0 (fin2AddRangeAddL' i E)).
rewrite fin2AddRangeAddL_fin2AddRangeAddL' in H0. rewrite H0. cbv. auto.
- assert (i < m). lia.
specialize (H1 (fin2AddRangeR' i H)).
rewrite fin2AddRangeR_fin2AddRangeR' in H1. rewrite H1. cbv. auto.
Qed.
End vremoveHN_vremoveTN.
Section vconsH_vconsT.
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
Context {A} {Azero : A}.
Notation v2f := (v2f Azero).
Notation vzero := (vzero Azero).
Definition vconsH {n} (x : A) (a : @vec A n) : @vec A (S n).
intros i. destruct (i ??= 0). exact x.
assert (0 < i). apply neq_0_lt_stt; auto.
apply (a.[fPredRangeP i H]).
Defined.
intros i. destruct (i ??= 0). exact x.
assert (0 < i). apply neq_0_lt_stt; auto.
apply (a.[fPredRangeP i H]).
Defined.
Lemma vconsH_spec_0 : forall {n} x (a : @vec A n) (i : nat),
i = 0 -> v2f (vconsH x a) i = x.
Proof.
intros. subst. unfold vconsH,v2f; simpl. auto.
Qed.
i = 0 -> v2f (vconsH x a) i = x.
Proof.
intros. subst. unfold vconsH,v2f; simpl. auto.
Qed.
Lemma vconsH_spec_gt0 : forall {n} x (a : @vec A n) (i : nat),
0 < i -> i < n -> v2f (vconsH x a) i = v2f a (pred i).
Proof.
intros. unfold vconsH,v2f; simpl. fin.
Qed.
0 < i -> i < n -> v2f (vconsH x a) i = v2f a (pred i).
Proof.
intros. unfold vconsH,v2f; simpl. fin.
Qed.
Lemma vnth_vconsH_0 : forall {n} x (a : @vec A n) i,
i = fin0 -> (vconsH x a).[i] = x.
Proof. intros. subst. unfold vconsH. simpl. auto. Qed.
i = fin0 -> (vconsH x a).[i] = x.
Proof. intros. subst. unfold vconsH. simpl. auto. Qed.
Lemma vnth_vconsH_gt0 : forall {n} x (a : @vec A n) (i : 'I_(S n)) (H: 0 < i),
(vconsH x a).[i] = a.[fPredRangeP i H].
Proof.
intros. unfold vconsH. fin.
Qed.
(vconsH x a).[i] = a.[fPredRangeP i H].
Proof.
intros. unfold vconsH. fin.
Qed.
Lemma vconsH_eq0_iff : forall {n} x (a : @vec A n),
vconsH x a = vzero <-> x = Azero /\ a = vzero.
Proof.
intros. rewrite !veq_iff_vnth. split; intros.
- split; intros; auto.
+ specialize (H fin0). rewrite vnth_vconsH_0 in H; auto.
+ specialize (H (fSuccRangeS i)). rewrite vnth_vzero in *. rewrite <- H.
erewrite vnth_vconsH_gt0. f_equal.
rewrite fPredRangeP_fSuccRangeS. auto.
- destruct H. subst. destruct (i ??= 0).
+ rewrite vnth_vconsH_0; auto. destruct i; simpl in *. apply fin_eq_iff; auto.
+ erewrite vnth_vconsH_gt0; auto.
Unshelve. rewrite fin2nat_fSuccRangeS. lia. lia.
Qed.
vconsH x a = vzero <-> x = Azero /\ a = vzero.
Proof.
intros. rewrite !veq_iff_vnth. split; intros.
- split; intros; auto.
+ specialize (H fin0). rewrite vnth_vconsH_0 in H; auto.
+ specialize (H (fSuccRangeS i)). rewrite vnth_vzero in *. rewrite <- H.
erewrite vnth_vconsH_gt0. f_equal.
rewrite fPredRangeP_fSuccRangeS. auto.
- destruct H. subst. destruct (i ??= 0).
+ rewrite vnth_vconsH_0; auto. destruct i; simpl in *. apply fin_eq_iff; auto.
+ erewrite vnth_vconsH_gt0; auto.
Unshelve. rewrite fin2nat_fSuccRangeS. lia. lia.
Qed.
Lemma vconsH_neq0_iff : forall {n} x (a : @vec A n),
vconsH x a <> vzero <-> x <> Azero \/ a <> vzero.
Proof. intros. rewrite vconsH_eq0_iff. tauto. Qed.
vconsH x a <> vzero <-> x <> Azero \/ a <> vzero.
Proof. intros. rewrite vconsH_eq0_iff. tauto. Qed.
vconsH (vhead a) (vremoveH a) = a
Lemma vconsH_vhead_vremoveH : forall {n} (a : @vec A (S n)),
vconsH (vhead a) (vremoveH a) = a.
Proof.
intros. apply veq_iff_vnth; intros. destruct (i ??= 0).
- rewrite vnth_vconsH_0.
+ unfold vhead. f_equal. destruct i; simpl in *; auto. apply fin_eq_iff; auto.
+ destruct i; simpl in *. apply fin_eq_iff; auto.
- erewrite vnth_vconsH_gt0. rewrite vnth_vremoveH. f_equal.
rewrite fSuccRangeS_fPredRangeP. auto.
Unshelve. lia.
Qed.
vconsH (vhead a) (vremoveH a) = a.
Proof.
intros. apply veq_iff_vnth; intros. destruct (i ??= 0).
- rewrite vnth_vconsH_0.
+ unfold vhead. f_equal. destruct i; simpl in *; auto. apply fin_eq_iff; auto.
+ destruct i; simpl in *. apply fin_eq_iff; auto.
- erewrite vnth_vconsH_gt0. rewrite vnth_vremoveH. f_equal.
rewrite fSuccRangeS_fPredRangeP. auto.
Unshelve. lia.
Qed.
vremoveH (vconsH a x) = a
Lemma vremoveH_vconsH : forall {n} x (a : @vec A n), vremoveH (vconsH x a) = a.
Proof.
intros. apply veq_iff_vnth; intros i. rewrite vnth_vremoveH.
erewrite vnth_vconsH_gt0. f_equal. apply fPredRangeP_fSuccRangeS.
Unshelve. rewrite fin2nat_fSuccRangeS. lia.
Qed.
Proof.
intros. apply veq_iff_vnth; intros i. rewrite vnth_vremoveH.
erewrite vnth_vconsH_gt0. f_equal. apply fPredRangeP_fSuccRangeS.
Unshelve. rewrite fin2nat_fSuccRangeS. lia.
Qed.
vhead (vconsH a x) = x
Lemma vhead_vconsH : forall {n} (a : @vec A n) x, vhead (vconsH x a) = x.
Proof. intros. unfold vhead. rewrite vnth_vconsH_0; auto. Qed.
Proof. intros. unfold vhead. rewrite vnth_vconsH_0; auto. Qed.
0; vzero = vzero
Lemma vconsH_0_vzero : forall {n}, @vconsH n Azero vzero = vzero.
Proof. intros. unfold vconsH. apply veq_iff_vnth; intros. fin. Qed.
Proof. intros. unfold vconsH. apply veq_iff_vnth; intros. fin. Qed.
Definition vconsT {n} (a : @vec A n) (x : A) : @vec A (S n).
intros i. destruct (i ??< n) as [E|E].
- apply (a.[fPredRange i E]).
- apply x.
Defined.
intros i. destruct (i ??< n) as [E|E].
- apply (a.[fPredRange i E]).
- apply x.
Defined.
Lemma vconsT_spec_n : forall {n} x (a : @vec A n) (i : nat),
i = n -> v2f (vconsT a x) i = x.
Proof. intros. subst. unfold vconsT,v2f; simpl. fin. Qed.
i = n -> v2f (vconsT a x) i = x.
Proof. intros. subst. unfold vconsT,v2f; simpl. fin. Qed.
Lemma vconsT_spec_lt : forall {n} x (a : @vec A n) (i : nat),
i < n -> v2f (vconsT a x) i = v2f a i.
Proof. intros. unfold vconsT,v2f; simpl. fin. Qed.
i < n -> v2f (vconsT a x) i = v2f a i.
Proof. intros. unfold vconsT,v2f; simpl. fin. Qed.
Lemma vnth_vconsT_n : forall {n} x (a : @vec A n) (i : 'I_(S n)),
fin2nat i = n -> (vconsT a x).[i] = x.
Proof. intros. unfold vconsT. fin. Qed.
fin2nat i = n -> (vconsT a x).[i] = x.
Proof. intros. unfold vconsT. fin. Qed.
Lemma vnth_vconsT_lt : forall {n} x (a : @vec A n) (i : 'I_(S n)) (H: i < n),
(vconsT a x).[i] = a (fPredRange i H).
Proof. intros. unfold vconsT. fin. Qed.
(vconsT a x).[i] = a (fPredRange i H).
Proof. intros. unfold vconsT. fin. Qed.
Lemma vconsT_eq0_iff : forall {n} (a : @vec A n) x,
vconsT a x = vzero <-> a = vzero /\ x = Azero.
Proof.
intros. rewrite !veq_iff_vnth. split; intros.
- split; intros; auto.
+ specialize (H (fSuccRange i)). rewrite vnth_vzero in *. rewrite <- H.
erewrite vnth_vconsT_lt. f_equal.
rewrite fPredRange_fSuccRange. auto.
+ specialize (H (nat2finS n)). rewrite vnth_vconsT_n in H; auto.
rewrite fin2nat_nat2finS; auto.
- pose proof (fin2nat_lt i).
destruct H. subst. destruct (i ??= n).
+ rewrite vnth_vconsT_n; auto.
+ erewrite vnth_vconsT_lt; auto.
Unshelve. all: try lia. rewrite fin2nat_fSuccRange. apply fin2nat_lt.
Qed.
vconsT a x = vzero <-> a = vzero /\ x = Azero.
Proof.
intros. rewrite !veq_iff_vnth. split; intros.
- split; intros; auto.
+ specialize (H (fSuccRange i)). rewrite vnth_vzero in *. rewrite <- H.
erewrite vnth_vconsT_lt. f_equal.
rewrite fPredRange_fSuccRange. auto.
+ specialize (H (nat2finS n)). rewrite vnth_vconsT_n in H; auto.
rewrite fin2nat_nat2finS; auto.
- pose proof (fin2nat_lt i).
destruct H. subst. destruct (i ??= n).
+ rewrite vnth_vconsT_n; auto.
+ erewrite vnth_vconsT_lt; auto.
Unshelve. all: try lia. rewrite fin2nat_fSuccRange. apply fin2nat_lt.
Qed.
Lemma vconsT_neq0_iff : forall {n} (a : @vec A n) x,
vconsT a x <> vzero <-> a <> vzero \/ x <> Azero.
Proof.
intros. rewrite vconsT_eq0_iff. split; intros.
apply not_and_or in H; auto. apply or_not_and; auto.
Qed.
vconsT a x <> vzero <-> a <> vzero \/ x <> Azero.
Proof.
intros. rewrite vconsT_eq0_iff. split; intros.
apply not_and_or in H; auto. apply or_not_and; auto.
Qed.
vconsT (vremoveT a) (vtail a) = a
Lemma vconsT_vremoveT_vtail : forall {n} (a : @vec A (S n)),
vconsT (vremoveT a) (vtail a) = a.
Proof.
intros. apply veq_iff_vnth; intros. destruct (i ??= n).
- destruct i as [i Hi]. simpl in *. subst. rewrite vnth_vconsT_n; auto.
rewrite vtail_eq. f_equal. erewrite nat2finS_eq. apply fin_eq_iff; auto.
- erewrite vnth_vconsT_lt. rewrite vnth_vremoveT. f_equal.
rewrite fSuccRange_fPredRange. auto.
Unshelve. all: try lia. pose proof (fin2nat_lt i). lia.
Qed.
vconsT (vremoveT a) (vtail a) = a.
Proof.
intros. apply veq_iff_vnth; intros. destruct (i ??= n).
- destruct i as [i Hi]. simpl in *. subst. rewrite vnth_vconsT_n; auto.
rewrite vtail_eq. f_equal. erewrite nat2finS_eq. apply fin_eq_iff; auto.
- erewrite vnth_vconsT_lt. rewrite vnth_vremoveT. f_equal.
rewrite fSuccRange_fPredRange. auto.
Unshelve. all: try lia. pose proof (fin2nat_lt i). lia.
Qed.
vremoveT (vconsT a x) = a
Lemma vremoveT_vconsT : forall {n} (a : @vec A n) x, vremoveT (vconsT a x) = a.
Proof.
intros. apply veq_iff_vnth; intros i. rewrite vnth_vremoveT.
erewrite vnth_vconsT_lt. f_equal. apply fPredRange_fSuccRange.
Unshelve. rewrite fin2nat_fSuccRange. apply fin2nat_lt.
Qed.
Proof.
intros. apply veq_iff_vnth; intros i. rewrite vnth_vremoveT.
erewrite vnth_vconsT_lt. f_equal. apply fPredRange_fSuccRange.
Unshelve. rewrite fin2nat_fSuccRange. apply fin2nat_lt.
Qed.
vtail (vconsT a x) = x
Lemma vtail_vconsT : forall {n} (a : @vec A n) x, vtail (vconsT a x) = x.
Proof.
intros. unfold vtail. rewrite vnth_vconsT_n; auto.
rewrite fin2nat_nat2finS; auto.
Qed.
Proof.
intros. unfold vtail. rewrite vnth_vconsT_n; auto.
rewrite fin2nat_nat2finS; auto.
Qed.
vzero; 0 = vzero
Lemma vconsT_vzero_eq0 : forall {n}, @vconsT n vzero Azero = vzero.
Proof.
intros. unfold vconsT. apply veq_iff_vnth; intros. fin.
Qed.
Proof.
intros. unfold vconsT. apply veq_iff_vnth; intros. fin.
Qed.
vmap2 f (vconsT a x) (vconsT b y) = vconsT (vmap2 f a b) (f x y)
Lemma vmap2_vconsT_vconsT : forall {n} (a b : @vec A n) (x y : A) (f : A -> A -> A),
vmap2 f (vconsT a x) (vconsT b y) = vconsT (vmap2 f a b) (f x y).
Proof.
intros. apply veq_iff_vnth; intros. rewrite vnth_vmap2.
unfold vconsT. fin.
Qed.
End vconsH_vconsT.
vmap2 f (vconsT a x) (vconsT b y) = vconsT (vmap2 f a b) (f x y).
Proof.
intros. apply veq_iff_vnth; intros. rewrite vnth_vmap2.
unfold vconsT. fin.
Qed.
End vconsH_vconsT.
Append two vectors, denoted with a ++ b
Definition vapp {n m} (a : vec n) (b : vec m) : vec (n + m).
intros i. destruct (i ??< n) as [E|E].
- exact (a.[fin2AddRangeR' i E]).
- assert (n <= i). apply Nat.nlt_ge; auto.
exact (b.[fin2AddRangeAddL' i H]).
Defined.
Infix "++" := vapp : vec_scope.
intros i. destruct (i ??< n) as [E|E].
- exact (a.[fin2AddRangeR' i E]).
- assert (n <= i). apply Nat.nlt_ge; auto.
exact (b.[fin2AddRangeAddL' i H]).
Defined.
Infix "++" := vapp : vec_scope.
i < n -> (a ++ b).i = u.i
Lemma vapp_spec_l : forall {n m} (a : vec n) (b : vec m) (i : nat),
i < n -> v2f Azero (a ++ b) i = v2f Azero a i.
Proof.
intros. unfold vapp.
assert (i < n + m). lia.
rewrite nth_v2f with (H:=H0). rewrite nth_v2f with (H:=H). fin.
Qed.
i < n -> v2f Azero (a ++ b) i = v2f Azero a i.
Proof.
intros. unfold vapp.
assert (i < n + m). lia.
rewrite nth_v2f with (H:=H0). rewrite nth_v2f with (H:=H). fin.
Qed.
n <= i -> i < n + m -> (a ++ b).i = a.(i - n)
Lemma vapp_spec_r : forall {n m} (a : vec n) (b : vec m) (i : nat),
n <= i -> i < n + m -> v2f Azero (a ++ b) i = v2f Azero b (i - n).
Proof.
intros. unfold vapp.
rewrite nth_v2f with (H:=H0). simpl. fin.
assert (i - n < m). lia. rewrite nth_v2f with (H:=H1). f_equal.
apply fin_eq_iff; auto.
Qed.
n <= i -> i < n + m -> v2f Azero (a ++ b) i = v2f Azero b (i - n).
Proof.
intros. unfold vapp.
rewrite nth_v2f with (H:=H0). simpl. fin.
assert (i - n < m). lia. rewrite nth_v2f with (H:=H1). f_equal.
apply fin_eq_iff; auto.
Qed.
Lemma vnth_vapp_l : forall {n m} (a : vec n) (b : vec m) (i : 'I_(n + m)) (H : i < n),
(a ++ b).[i] = a.[fin2AddRangeR' i H].
Proof. intros. destruct i as [i Hi]. unfold vapp. simpl. fin. Qed.
(a ++ b).[i] = a.[fin2AddRangeR' i H].
Proof. intros. destruct i as [i Hi]. unfold vapp. simpl. fin. Qed.
Lemma vnth_vapp_r : forall {n m} (a : vec n) (b : vec m) (i : 'I_(n + m)) (H : n <= i),
(a ++ b).[i] = b.[fin2AddRangeAddL' i H].
Proof. intros. destruct i as [i Hi]. unfold vapp. simpl in *. fin. Qed.
(a ++ b).[i] = b.[fin2AddRangeAddL' i H].
Proof. intros. destruct i as [i Hi]. unfold vapp. simpl in *. fin. Qed.
(a ++ b) = 0 <-> a = 0 /\ b = 0
Lemma vapp_eq0_iff : forall {n m} (a : vec n) (b : vec m),
a ++ b = vzero <-> a = vzero /\ b = vzero.
Proof.
intros. rewrite !veq_iff_vnth. split; intros.
- split; intros.
+ specialize (H (fin2AddRangeR i)).
erewrite vnth_vapp_l in H. rewrite fin2AddRangeR'_fin2AddRangeR in H.
rewrite H. cbv. auto.
+ specialize (H (fin2AddRangeAddL i)).
erewrite vnth_vapp_r in H. erewrite fin2AddRangeAddL'_fin2AddRangeAddL in H.
rewrite H. cbv. auto.
- destruct H. destruct (i ??< n) as [E|E].
+ rewrite vnth_vapp_l with (H:=E). rewrite H. cbv. auto.
+ erewrite vnth_vapp_r. rewrite H0. cbv. auto.
Unshelve. all: try lia.
* rewrite fin2nat_fin2AddRangeR. apply fin2nat_lt.
* rewrite fin2nat_fin2AddRangeAddL. lia.
Qed.
a ++ b = vzero <-> a = vzero /\ b = vzero.
Proof.
intros. rewrite !veq_iff_vnth. split; intros.
- split; intros.
+ specialize (H (fin2AddRangeR i)).
erewrite vnth_vapp_l in H. rewrite fin2AddRangeR'_fin2AddRangeR in H.
rewrite H. cbv. auto.
+ specialize (H (fin2AddRangeAddL i)).
erewrite vnth_vapp_r in H. erewrite fin2AddRangeAddL'_fin2AddRangeAddL in H.
rewrite H. cbv. auto.
- destruct H. destruct (i ??< n) as [E|E].
+ rewrite vnth_vapp_l with (H:=E). rewrite H. cbv. auto.
+ erewrite vnth_vapp_r. rewrite H0. cbv. auto.
Unshelve. all: try lia.
* rewrite fin2nat_fin2AddRangeR. apply fin2nat_lt.
* rewrite fin2nat_fin2AddRangeAddL. lia.
Qed.
vapp (vheadN a) (vtailN a) = a
Lemma vapp_vheadN_vtailN : forall {n m} (a : vec (n + m)), vheadN a ++ vtailN a = a.
Proof.
intros. apply veq_iff_vnth; intros.
destruct (i ??< n) as [E|E].
- erewrite vnth_vapp_l. rewrite vnth_vheadN.
rewrite fin2AddRangeR_fin2AddRangeR'. auto.
- erewrite vnth_vapp_r. rewrite vnth_vtailN.
rewrite fin2AddRangeAddL_fin2AddRangeAddL'. auto.
Unshelve. auto. lia.
Qed.
End vapp.
Infix "++" := vapp : vec_scope.
Section vapp_extra.
Context {A B C : Type}.
Lemma vmap2_vapp_vapp :
forall {n m} (f : A -> B -> C)
(a : @vec A n) (b : @vec A m) (c : @vec B n) (d : @vec B m),
vmap2 f (a ++ b) (c ++ d) = (vmap2 f a c) ++ (vmap2 f b d).
Proof.
intros. unfold vmap2. apply veq_iff_vnth. intros.
destruct (i ??< n).
- erewrite !vnth_vapp_l. auto.
- erewrite !vnth_vapp_r. auto.
Unshelve. auto. lia.
Qed.
End vapp_extra.
Proof.
intros. apply veq_iff_vnth; intros.
destruct (i ??< n) as [E|E].
- erewrite vnth_vapp_l. rewrite vnth_vheadN.
rewrite fin2AddRangeR_fin2AddRangeR'. auto.
- erewrite vnth_vapp_r. rewrite vnth_vtailN.
rewrite fin2AddRangeAddL_fin2AddRangeAddL'. auto.
Unshelve. auto. lia.
Qed.
End vapp.
Infix "++" := vapp : vec_scope.
Section vapp_extra.
Context {A B C : Type}.
Lemma vmap2_vapp_vapp :
forall {n m} (f : A -> B -> C)
(a : @vec A n) (b : @vec A m) (c : @vec B n) (d : @vec B m),
vmap2 f (a ++ b) (c ++ d) = (vmap2 f a c) ++ (vmap2 f b d).
Proof.
intros. unfold vmap2. apply veq_iff_vnth. intros.
destruct (i ??< n).
- erewrite !vnth_vapp_l. auto.
- erewrite !vnth_vapp_r. auto.
Unshelve. auto. lia.
Qed.
End vapp_extra.
Every element of `a` satisfy the `P`
There exist element of `v` satisfy the `P`
Element `x` belongs to the vector `a`
Definition vmem {n} (a : @vec A n) (x : A) : Prop := vexist a (fun x0 => x0 = x).
Lemma vmem_vnth : forall {n} (a : @vec A n) (i : 'I_n), vmem a (a.[i]).
Proof. intros. hnf. exists i; auto. Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
Lemma vmem_vnth : forall {n} (a : @vec A n) (i : 'I_n), vmem a (a.[i]).
Proof. intros. hnf. exists i; auto. Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
{x ∈ a} + {x ∉ a}
Lemma vmem_dec : forall {n} (a : @vec A n) (x : A), {vmem a x} + {~vmem a x}.
Proof.
intros. unfold vmem, vexist. induction n.
- right. intro. destruct H. apply fin0_False; auto.
- rewrite <- (vconsH_vhead_vremoveH a).
destruct (Aeqdec (vhead a) x) as [H|H].
+ left. exists fin0. rewrite vnth_vconsH_0; auto.
+ destruct (IHn (vremoveH a)) as [H1|H1].
* left. destruct H1 as [i H1]. exists (fSuccRangeS i).
erewrite vnth_vconsH_gt0.
rewrite fPredRangeP_fSuccRangeS. auto.
* right. intro. destruct H1. destruct H0 as [i H0].
destruct (i ??= 0).
** rewrite vnth_vconsH_0 in H0; auto; try easy.
destruct i; simpl in *; apply fin_eq_iff; auto.
** erewrite vnth_vconsH_gt0 in H0.
eexists (fPredRangeP i _). apply H0.
Unshelve. all: try lia. rewrite fin2nat_fSuccRangeS. lia.
Qed.
End AeqDec.
End vmem.
Proof.
intros. unfold vmem, vexist. induction n.
- right. intro. destruct H. apply fin0_False; auto.
- rewrite <- (vconsH_vhead_vremoveH a).
destruct (Aeqdec (vhead a) x) as [H|H].
+ left. exists fin0. rewrite vnth_vconsH_0; auto.
+ destruct (IHn (vremoveH a)) as [H1|H1].
* left. destruct H1 as [i H1]. exists (fSuccRangeS i).
erewrite vnth_vconsH_gt0.
rewrite fPredRangeP_fSuccRangeS. auto.
* right. intro. destruct H1. destruct H0 as [i H0].
destruct (i ??= 0).
** rewrite vnth_vconsH_0 in H0; auto; try easy.
destruct i; simpl in *; apply fin_eq_iff; auto.
** erewrite vnth_vconsH_gt0 in H0.
eexists (fPredRangeP i _). apply H0.
Unshelve. all: try lia. rewrite fin2nat_fSuccRangeS. lia.
Qed.
End AeqDec.
End vmem.
Every element of vector `a` belongs to vector `b`
Definition vmems {r s} (a : @vec A r) (b : @vec A s) : Prop :=
vforall a (fun x => vmem b x).
Lemma vmems_refl : forall {n} (a : @vec A n), vmems a a.
Proof. intros. unfold vmems, vforall. apply vmem_vnth. Qed.
Lemma vmems_trans : forall {r s t} (a : @vec A r) (b : @vec A s) (c : @vec A t),
vmems a b -> vmems b c -> vmems a c.
Proof.
intros. unfold vmems, vforall in *. intros.
specialize (H i). destruct H as [j H]. rewrite <- H. auto.
Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
vforall a (fun x => vmem b x).
Lemma vmems_refl : forall {n} (a : @vec A n), vmems a a.
Proof. intros. unfold vmems, vforall. apply vmem_vnth. Qed.
Lemma vmems_trans : forall {r s t} (a : @vec A r) (b : @vec A s) (c : @vec A t),
vmems a b -> vmems b c -> vmems a c.
Proof.
intros. unfold vmems, vforall in *. intros.
specialize (H i). destruct H as [j H]. rewrite <- H. auto.
Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
{a ⊆ b} + {~(a ⊆ b)}
Lemma vmems_dec : forall {r s} (a : @vec A r) (b : @vec A s),
{vmems a b} + {~vmems a b}.
Proof.
intros. unfold vmems, vforall. induction r.
- left. intro. exfalso. apply fin0_False; auto.
- rewrite <- (vconsH_vhead_vremoveH a).
specialize (IHr (vremoveH a)). destruct IHr as [H|H].
+ destruct (vmem_dec b (vhead a)) as [H1|H1].
* left. intros. destruct (i ??= 0).
** rewrite vnth_vconsH_0; auto.
destruct i; simpl in *; apply fin_eq_iff; auto.
** erewrite vnth_vconsH_gt0; auto.
* right. apply ex_not_not_all. exists fin0. rewrite vnth_vconsH_0; auto.
+ right. intro. destruct H. intro.
specialize (H0 (fSuccRangeS i)).
assert (0 < (fSuccRangeS i)).
apply fin2nat_fSuccRangeS_gt0.
rewrite vnth_vconsH_gt0 with (H:=H) in H0.
rewrite fPredRangeP_fSuccRangeS in H0. auto.
Unshelve. lia.
Qed.
End AeqDec.
End vmems.
{vmems a b} + {~vmems a b}.
Proof.
intros. unfold vmems, vforall. induction r.
- left. intro. exfalso. apply fin0_False; auto.
- rewrite <- (vconsH_vhead_vremoveH a).
specialize (IHr (vremoveH a)). destruct IHr as [H|H].
+ destruct (vmem_dec b (vhead a)) as [H1|H1].
* left. intros. destruct (i ??= 0).
** rewrite vnth_vconsH_0; auto.
destruct i; simpl in *; apply fin_eq_iff; auto.
** erewrite vnth_vconsH_gt0; auto.
* right. apply ex_not_not_all. exists fin0. rewrite vnth_vconsH_0; auto.
+ right. intro. destruct H. intro.
specialize (H0 (fSuccRangeS i)).
assert (0 < (fSuccRangeS i)).
apply fin2nat_fSuccRangeS_gt0.
rewrite vnth_vconsH_gt0 with (H:=H) in H0.
rewrite fPredRangeP_fSuccRangeS in H0. auto.
Unshelve. lia.
Qed.
End AeqDec.
End vmems.
Two vectors are equivalent (i.e., contain each other)
Definition vequiv {r s} (a : @vec A r) (b : @vec A s) : Prop :=
vmems a b /\ vmems b a.
Lemma vequiv_refl : forall {n} (a : @vec A n), vequiv a a.
Proof. intros. unfold vequiv. split; apply vmems_refl. Qed.
Lemma vequiv_syms : forall {r s} (a : @vec A r) (b : @vec A s), vequiv a b -> vequiv b a.
Proof. intros. unfold vequiv in *. tauto. Qed.
Lemma vequiv_trans : forall {r s t} (a : @vec A r) (b : @vec A s) (c : @vec A t),
vequiv a b -> vequiv b c -> vequiv a c.
Proof.
intros. unfold vequiv in *. destruct H as [H1 H2], H0 as [H3 H4]. split.
apply vmems_trans with b; auto.
apply vmems_trans with b; auto.
Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
vmems a b /\ vmems b a.
Lemma vequiv_refl : forall {n} (a : @vec A n), vequiv a a.
Proof. intros. unfold vequiv. split; apply vmems_refl. Qed.
Lemma vequiv_syms : forall {r s} (a : @vec A r) (b : @vec A s), vequiv a b -> vequiv b a.
Proof. intros. unfold vequiv in *. tauto. Qed.
Lemma vequiv_trans : forall {r s t} (a : @vec A r) (b : @vec A s) (c : @vec A t),
vequiv a b -> vequiv b c -> vequiv a c.
Proof.
intros. unfold vequiv in *. destruct H as [H1 H2], H0 as [H3 H4]. split.
apply vmems_trans with b; auto.
apply vmems_trans with b; auto.
Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
{a ∼ b} + {~(a ∼ b)}
Lemma vequiv_dec : forall {r s} (a : @vec A r) (b : @vec A s),
{vequiv a b} + {~ vequiv a b}.
Proof.
intros. unfold vequiv. destruct (vmems_dec a b), (vmems_dec b a); try tauto.
Qed.
End AeqDec.
End vequiv.
Section test.
Let a : vec 2 := l2v 9 [1;2].
Let b : vec 3 := l2v 9 [1;2;1].
Example vequiv_example1 : vequiv a b.
Proof.
unfold a, b, vequiv, vmems, vmem, vforall, vexist. split.
- intros. destruct i as [i Hi].
repeat (destruct i; try lia); try rewrite vnth_l2v; simpl.
exists (nat2finS 0); auto.
exists (nat2finS 1); auto.
- intros. destruct i as [i Hi].
repeat (destruct i; try lia); try rewrite vnth_l2v; simpl.
exists (nat2finS 0); auto.
exists (nat2finS 1); auto.
exists (nat2finS 0); auto.
Qed.
End test.
{vequiv a b} + {~ vequiv a b}.
Proof.
intros. unfold vequiv. destruct (vmems_dec a b), (vmems_dec b a); try tauto.
Qed.
End AeqDec.
End vequiv.
Section test.
Let a : vec 2 := l2v 9 [1;2].
Let b : vec 3 := l2v 9 [1;2;1].
Example vequiv_example1 : vequiv a b.
Proof.
unfold a, b, vequiv, vmems, vmem, vforall, vexist. split.
- intros. destruct i as [i Hi].
repeat (destruct i; try lia); try rewrite vnth_l2v; simpl.
exists (nat2finS 0); auto.
exists (nat2finS 1); auto.
- intros. destruct i as [i Hi].
repeat (destruct i; try lia); try rewrite vnth_l2v; simpl.
exists (nat2finS 0); auto.
exists (nat2finS 1); auto.
exists (nat2finS 0); auto.
Qed.
End test.
((x + a.1) + a.2) + ...
... + (v.(n-1) + (v.n + x))
Convert `vfoldl` to `seqfoldl`
Lemma vfoldl_eq_seqfoldl :
forall {n} (a : @vec A n) (x : B) (f : B -> A -> B) (s : nat -> A),
(forall i, a.[i] = s (i)) -> vfoldl a x f = seqfoldl s n x f.
Proof.
intros. unfold vfoldl. apply seqfoldl_eq; auto.
intros. rewrite nth_v2f with (H:=H0). rewrite H.
rewrite fin2nat_nat2fin. auto.
Qed.
End vfold.
forall {n} (a : @vec A n) (x : B) (f : B -> A -> B) (s : nat -> A),
(forall i, a.[i] = s (i)) -> vfoldl a x f = seqfoldl s n x f.
Proof.
intros. unfold vfoldl. apply seqfoldl_eq; auto.
intros. rewrite nth_v2f with (H:=H0). rewrite H.
rewrite fin2nat_nat2fin. auto.
Qed.
End vfold.
Section vsum.
Context `{HAMonoid : AMonoid}.
Infix "+" := Aadd : A_scope.
Notation "0" := Azero : A_scope.
Notation seqsum := (@seqsum _ Aadd 0).
Context `{HAMonoid : AMonoid}.
Infix "+" := Aadd : A_scope.
Notation "0" := Azero : A_scope.
Notation seqsum := (@seqsum _ Aadd 0).
∑a = a.0 + a.1 + ... + a.(n-1)
Definition vsum {n} (a : @vec A n) := seqsum n (v2f 0 a).
Notation "\sum a" := (vsum a) : vec_scope.
Notation "\sum a" := (vsum a) : vec_scope.
(∀ i, a.i = b.i) -> Σa = Σb
Lemma vsum_eq : forall {n} (a b : @vec A n), (forall i, a.[i] = b.[i]) -> \sum a = \sum b.
Proof.
intros. unfold vsum. apply seqsum_eq; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
Proof.
intros. unfold vsum. apply seqsum_eq; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
(∀ i, a.i = 0) -> Σa = 0
Lemma vsum_eq0 : forall {n} (a : @vec A n), (forall i, a.[i] = 0) -> \sum a = 0.
Proof.
intros. unfold vsum. apply seqsum_eq0; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
Proof.
intros. unfold vsum. apply seqsum_eq0; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
`vsum` of (S n) elements, equal to addition of Sum and tail
Lemma vsumS_tail : forall {n} (a : @vec A (S n)),
\sum a = \sum (fun i => a.[fSuccRange i]) + a.[nat2finS n].
Proof.
intros. unfold vsum. rewrite seqsumS_tail. f_equal.
- apply seqsum_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRange_nat2fin. auto.
- erewrite nth_v2f. erewrite nat2finS_eq. auto.
Unshelve. all: try lia.
Qed.
\sum a = \sum (fun i => a.[fSuccRange i]) + a.[nat2finS n].
Proof.
intros. unfold vsum. rewrite seqsumS_tail. f_equal.
- apply seqsum_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRange_nat2fin. auto.
- erewrite nth_v2f. erewrite nat2finS_eq. auto.
Unshelve. all: try lia.
Qed.
`vsum` of (S n) elements, equal to addition of head and Sum
Lemma vsumS_head : forall {n} (a : @vec A (S n)),
\sum a = a.[nat2finS 0] + \sum (fun i => a.[fSuccRangeS i]).
Proof.
intros. unfold vsum. rewrite seqsumS_head; auto. f_equal.
apply seqsum_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRangeS_nat2fin. auto.
Unshelve. lia. auto.
Qed.
\sum a = a.[nat2finS 0] + \sum (fun i => a.[fSuccRangeS i]).
Proof.
intros. unfold vsum. rewrite seqsumS_head; auto. f_equal.
apply seqsum_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRangeS_nat2fin. auto.
Unshelve. lia. auto.
Qed.
Lemma vsum_add : forall {n} (a b : @vec A n),
\sum a + \sum b = \sum (fun i => a.[i] + b.[i]).
Proof.
intros. unfold vsum. rewrite seqsum_add. apply seqsum_eq; intros.
rewrite !nth_v2f with (H:=H). auto.
Qed.
\sum a + \sum b = \sum (fun i => a.[i] + b.[i]).
Proof.
intros. unfold vsum. rewrite seqsum_add. apply seqsum_eq; intros.
rewrite !nth_v2f with (H:=H). auto.
Qed.
`vsum` which only one item is nonzero, then got this item.
Lemma vsum_unique : forall {n} (a : @vec A n) (x : A) i,
a.[i] = x -> (forall j, i <> j -> a.[j] = Azero) -> \sum a = x.
Proof.
intros. unfold vsum. apply seqsum_unique with (i:=i); auto; fin.
- rewrite <- H. rewrite nth_v2f with (H:=fin2nat_lt _); fin.
- intros. unfold v2f. fin.
specialize (H0 (nat2fin j E)). rewrite <- H0; auto.
intro; destruct H2; subst. fin.
Qed.
a.[i] = x -> (forall j, i <> j -> a.[j] = Azero) -> \sum a = x.
Proof.
intros. unfold vsum. apply seqsum_unique with (i:=i); auto; fin.
- rewrite <- H. rewrite nth_v2f with (H:=fin2nat_lt _); fin.
- intros. unfold v2f. fin.
specialize (H0 (nat2fin j E)). rewrite <- H0; auto.
intro; destruct H2; subst. fin.
Qed.
`vsum` of the m+n elements equal to plus of two parts.
Σ0,(m+n) a = Σ0,m(fun i=>ai) + Σm,m+n (fun i=>am+i)
Lemma vsum_plusIdx : forall m n (a : @vec A (m + n)),
\sum a = \sum (fun i => a.[fin2AddRangeR i]) +
\sum (fun i => a.[fin2AddRangeAddL i]).
Proof.
intros. unfold vsum. rewrite seqsum_plusIdx. f_equal.
- apply seqsum_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
- apply seqsum_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
\sum a = \sum (fun i => a.[fin2AddRangeR i]) +
\sum (fun i => a.[fin2AddRangeAddL i]).
Proof.
intros. unfold vsum. rewrite seqsum_plusIdx. f_equal.
- apply seqsum_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
- apply seqsum_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
`vsum` of the m+n elements equal to plus of two parts.
(i < m -> a.i = b.i) ->
(i < n -> a.(m+i) = c.i) ->
Σ0,(m+n) a = Σ0,m b + Σm,m+n c.
Lemma vsum_plusIdx_ext : forall m n (a : @vec A (m + n)) (b : @vec A m) (c : @vec A n),
(forall i : 'I_m, a.[fin2AddRangeR i] = b.[i]) ->
(forall i : 'I_n, a.[fin2AddRangeAddL i] = c.[i]) ->
\sum a = \sum b + \sum c.
Proof.
intros. unfold vsum. rewrite seqsum_plusIdx. f_equal.
- apply seqsum_eq; intros. erewrite !nth_v2f. rewrite <- H. f_equal.
apply fin_eq_iff; auto.
- apply seqsum_eq; intros. erewrite !nth_v2f. rewrite <- H0. f_equal.
apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
(forall i : 'I_m, a.[fin2AddRangeR i] = b.[i]) ->
(forall i : 'I_n, a.[fin2AddRangeAddL i] = c.[i]) ->
\sum a = \sum b + \sum c.
Proof.
intros. unfold vsum. rewrite seqsum_plusIdx. f_equal.
- apply seqsum_eq; intros. erewrite !nth_v2f. rewrite <- H. f_equal.
apply fin_eq_iff; auto.
- apply seqsum_eq; intros. erewrite !nth_v2f. rewrite <- H0. f_equal.
apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
The order of two nested summations can be exchanged.
∑i,0,r(∑j,0,c a.ij) =
a00 + a01 + ... + a0c +
a10 + a11 + ... + a1c +
...
ar0 + ar1 + ... + arc =
∑j,0,c(∑i,0,r a.ij)
Lemma vsum_vsum : forall r c (a : @vec (@vec A c) r),
\sum (fun i => \sum (fun j => a.[i].[j])) =
\sum (fun j => \sum (fun i => a.[i].[j])).
Proof.
intros. unfold vsum. destruct r,c; auto.
- rewrite seqsumS_tail. simpl. rewrite seqsum_eq0; auto.
* amonoid. unfold v2f. fin.
* intros. unfold v2f. fin.
- rewrite seqsumS_tail. simpl. rewrite seqsum_eq0; auto.
* amonoid. unfold v2f. fin.
* intros. unfold v2f. fin.
- pose proof (seqsum_seqsum (S r) (S c) (fun i j => a #i #j)).
match goal with
| H: ?a1 = ?b1 |- ?a2 = ?b2 => replace a2 with a1;[replace b2 with b1|]; auto
end.
+ apply seqsum_eq; intros. rewrite nth_v2f with (H:=H0).
apply seqsum_eq; intros. rewrite nth_v2f with (H:=H1).
f_equal; apply nat2finS_eq; apply fin_eq_iff.
+ apply seqsum_eq; intros. rewrite nth_v2f with (H:=H0).
apply seqsum_eq; intros. rewrite nth_v2f with (H:=H1).
f_equal; apply nat2finS_eq; apply fin_eq_iff.
Qed.
Lemma vsum_vapp : forall {m n} (a : @vec A m) (b : @vec A n),
\sum (a ++ b) = \sum a + \sum b.
Proof.
intros. apply vsum_plusIdx_ext; intros.
- erewrite vnth_vapp_l. f_equal. rewrite fin2AddRangeR'_fin2AddRangeR. auto.
- erewrite vnth_vapp_r. f_equal.
rewrite fin2AddRangeAddL'_fin2AddRangeAddL. auto.
Unshelve. rewrite fin2nat_fin2AddRangeR. apply fin2nat_lt.
rewrite fin2nat_fin2AddRangeAddL. lia.
Qed.
\sum (fun i => \sum (fun j => a.[i].[j])) =
\sum (fun j => \sum (fun i => a.[i].[j])).
Proof.
intros. unfold vsum. destruct r,c; auto.
- rewrite seqsumS_tail. simpl. rewrite seqsum_eq0; auto.
* amonoid. unfold v2f. fin.
* intros. unfold v2f. fin.
- rewrite seqsumS_tail. simpl. rewrite seqsum_eq0; auto.
* amonoid. unfold v2f. fin.
* intros. unfold v2f. fin.
- pose proof (seqsum_seqsum (S r) (S c) (fun i j => a #i #j)).
match goal with
| H: ?a1 = ?b1 |- ?a2 = ?b2 => replace a2 with a1;[replace b2 with b1|]; auto
end.
+ apply seqsum_eq; intros. rewrite nth_v2f with (H:=H0).
apply seqsum_eq; intros. rewrite nth_v2f with (H:=H1).
f_equal; apply nat2finS_eq; apply fin_eq_iff.
+ apply seqsum_eq; intros. rewrite nth_v2f with (H:=H0).
apply seqsum_eq; intros. rewrite nth_v2f with (H:=H1).
f_equal; apply nat2finS_eq; apply fin_eq_iff.
Qed.
Lemma vsum_vapp : forall {m n} (a : @vec A m) (b : @vec A n),
\sum (a ++ b) = \sum a + \sum b.
Proof.
intros. apply vsum_plusIdx_ext; intros.
- erewrite vnth_vapp_l. f_equal. rewrite fin2AddRangeR'_fin2AddRangeR. auto.
- erewrite vnth_vapp_r. f_equal.
rewrite fin2AddRangeAddL'_fin2AddRangeAddL. auto.
Unshelve. rewrite fin2nat_fin2AddRangeR. apply fin2nat_lt.
rewrite fin2nat_fin2AddRangeAddL. lia.
Qed.
∑ (vconsT a x) = ∑ a + x
Lemma vsum_vconsT : forall {n} (a : @vec A n) (x : A),
\sum (vconsT a x) = \sum a + x.
Proof.
intros. rewrite vsumS_tail. f_equal.
- apply vsum_eq; intros. erewrite vnth_vconsT_lt. fin.
- rewrite vnth_vconsT_n; auto. fin.
Unshelve. fin.
Qed.
Section AGroup.
Context `{HAGroup : AGroup A Aadd Azero Aopp}.
Notation "- a" := (Aopp a) : A_scope.
\sum (vconsT a x) = \sum a + x.
Proof.
intros. rewrite vsumS_tail. f_equal.
- apply vsum_eq; intros. erewrite vnth_vconsT_lt. fin.
- rewrite vnth_vconsT_n; auto. fin.
Unshelve. fin.
Qed.
Section AGroup.
Context `{HAGroup : AGroup A Aadd Azero Aopp}.
Notation "- a" := (Aopp a) : A_scope.
- Σa = Σ(fun i => -a.i)
Lemma vsum_opp : forall {n} (a : @vec A n),
- \sum a = \sum (fun i => - a.[i]).
Proof.
intros. unfold vsum. rewrite seqsum_opp; auto. apply seqsum_eq; intros.
unfold v2f. fin.
Qed.
End AGroup.
Section ARing.
Context `{HARing:ARing A Aadd Azero Aopp Amul Aone}.
Infix "*" := (Amul) : A_scope.
- \sum a = \sum (fun i => - a.[i]).
Proof.
intros. unfold vsum. rewrite seqsum_opp; auto. apply seqsum_eq; intros.
unfold v2f. fin.
Qed.
End AGroup.
Section ARing.
Context `{HARing:ARing A Aadd Azero Aopp Amul Aone}.
Infix "*" := (Amul) : A_scope.
x * Σa = Σ(fun i -> x * a.i)
Lemma vsum_cmul_l : forall {n} (a : @vec A n) x,
x * \sum a = \sum (fun i => x * a.[i]).
Proof.
intros. unfold vsum. rewrite seqsum_cmul_l. apply seqsum_eq; intros.
unfold v2f. fin.
Qed.
x * \sum a = \sum (fun i => x * a.[i]).
Proof.
intros. unfold vsum. rewrite seqsum_cmul_l. apply seqsum_eq; intros.
unfold v2f. fin.
Qed.
Σa * x = Σ(fun i -> a.i * x)
Lemma vsum_cmul_r : forall {n} (a : @vec A n) x,
\sum a * x = \sum (fun i => a.[i] * x).
Proof.
intros. unfold vsum. rewrite seqsum_cmul_r. apply seqsum_eq; intros.
unfold v2f. fin.
Qed.
End ARing.
Section OrderedARing.
Context `{HOrderedARing
: OrderedARing A Aadd Azero Aopp Amul Aone Alt Ale}.
Infix "*" := (Amul) : A_scope.
Infix "<" := Alt.
Infix "<=" := Ale.
\sum a * x = \sum (fun i => a.[i] * x).
Proof.
intros. unfold vsum. rewrite seqsum_cmul_r. apply seqsum_eq; intros.
unfold v2f. fin.
Qed.
End ARing.
Section OrderedARing.
Context `{HOrderedARing
: OrderedARing A Aadd Azero Aopp Amul Aone Alt Ale}.
Infix "*" := (Amul) : A_scope.
Infix "<" := Alt.
Infix "<=" := Ale.
(∀ i, 0 <= a.i) -> a.i <= ∑a
Lemma vsum_ge_any : forall {n} (a : @vec A n) i,
(forall i, Azero <= a.[i]) -> a.[i] <= \sum a.
Proof.
intros. unfold vsum.
replace (a i) with (v2f 0 a (i)).
- apply seqsum_ge_any; fin. intros. unfold v2f. fin.
- erewrite nth_v2f. f_equal. rewrite nat2fin_fin2nat; auto.
Unshelve. apply fin2nat_lt.
Qed.
(forall i, Azero <= a.[i]) -> a.[i] <= \sum a.
Proof.
intros. unfold vsum.
replace (a i) with (v2f 0 a (i)).
- apply seqsum_ge_any; fin. intros. unfold v2f. fin.
- erewrite nth_v2f. f_equal. rewrite nat2fin_fin2nat; auto.
Unshelve. apply fin2nat_lt.
Qed.
(∀ i, 0 <= a.i) -> 0 <= ∑a
Lemma vsum_ge0 : forall {n} (a : @vec A n), (forall i, Azero <= a.[i]) -> Azero <= \sum a.
Proof.
intros. pose proof (vsum_ge_any a). destruct n.
- cbv. apply le_refl.
- apply le_trans with (a.1); auto.
Qed.
Proof.
intros. pose proof (vsum_ge_any a). destruct n.
- cbv. apply le_refl.
- apply le_trans with (a.1); auto.
Qed.
(∀ i, 0 <= a.i) -> (∃ i, a.i <> 0) -> 0 < ∑a
Lemma vsum_gt0 : forall {n} (a : @vec A n),
(forall i, Azero <= a.[i]) -> (exists i, a.[i] <> Azero) -> Azero < \sum a.
Proof.
intros. destruct H0 as [i H0].
pose proof (vsum_ge0 a H). pose proof (vsum_ge_any a i H).
assert (Azero < a.[i]). apply lt_if_le_and_neq; auto.
apply lt_trans_lt_le with (a.[i]); auto.
Qed.
(forall i, Azero <= a.[i]) -> (exists i, a.[i] <> Azero) -> Azero < \sum a.
Proof.
intros. destruct H0 as [i H0].
pose proof (vsum_ge0 a H). pose proof (vsum_ge_any a i H).
assert (Azero < a.[i]). apply lt_if_le_and_neq; auto.
apply lt_trans_lt_le with (a.[i]); auto.
Qed.
(∀i, a.i >= 0) -> ∑a = 0 -> (∀i, a.i = 0)
Lemma vsum_eq0_rev : forall {n} (a : @vec A n),
(forall i, 0 <= a.[i]) -> \sum a = 0 -> (forall i, a.[i] = 0).
Proof.
intros. destruct (Aeqdec (a.[i]) 0); auto. exfalso.
pose proof (vsum_ge_any a i H). rewrite H0 in H1.
specialize (H i).
assert (a.[i] = 0). apply le_antisym; auto. easy.
Qed.
End OrderedARing.
End vsum.
Arguments vsum {A} Aadd Azero {n}.
(forall i, 0 <= a.[i]) -> \sum a = 0 -> (forall i, a.[i] = 0).
Proof.
intros. destruct (Aeqdec (a.[i]) 0); auto. exfalso.
pose proof (vsum_ge_any a i H). rewrite H0 in H1.
specialize (H i).
assert (a.[i] = 0). apply le_antisym; auto. easy.
Qed.
End OrderedARing.
End vsum.
Arguments vsum {A} Aadd Azero {n}.
vsum with vinsert and vremove
Section vsum_vinsert_vremove.
Context `{HAGroup : AGroup}.
Infix "+" := Aadd : A_scope.
Notation "0" := Azero : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + - b).
Infix "-" := Asub : A_scope.
Notation vsum := (@vsum _ Aadd Azero).
Notation seqsum := (@seqsum _ Aadd Azero).
Notation seqsum_plusIdx := (@seqsum_plusIdx _ Aadd Azero).
Context `{HAGroup : AGroup}.
Infix "+" := Aadd : A_scope.
Notation "0" := Azero : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + - b).
Infix "-" := Asub : A_scope.
Notation vsum := (@vsum _ Aadd Azero).
Notation seqsum := (@seqsum _ Aadd Azero).
Notation seqsum_plusIdx := (@seqsum_plusIdx _ Aadd Azero).
∑(insert a i x) = ∑a + x
Lemma vsum_vinsert : forall {n} (a : @vec A n) (x : A) (i : 'I_(S n)),
vsum (vinsert a i x) = vsum a + x.
Proof.
intros. pose proof (fin2nat_lt i).
rewrite (vinsert_eq_vinsert' _ (Azero:=Azero)).
unfold vinsert'. unfold vsum.
replace (S n) with (i + (S (n - i)))%nat at 1 by lia.
replace n with (i + (n - i))%nat at 6 by lia.
rewrite !seqsum_plusIdx. rewrite seqsumS_head.
match goal with
| |- ?a+(?b+?c) = _ => replace (a+(b+c)) with (a+c+b) by agroup end. f_equal.
- f_equal.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
- unfold v2f,f2v. fin.
Qed.
vsum (vinsert a i x) = vsum a + x.
Proof.
intros. pose proof (fin2nat_lt i).
rewrite (vinsert_eq_vinsert' _ (Azero:=Azero)).
unfold vinsert'. unfold vsum.
replace (S n) with (i + (S (n - i)))%nat at 1 by lia.
replace n with (i + (n - i))%nat at 6 by lia.
rewrite !seqsum_plusIdx. rewrite seqsumS_head.
match goal with
| |- ?a+(?b+?c) = _ => replace (a+(b+c)) with (a+c+b) by agroup end. f_equal.
- f_equal.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
- unfold v2f,f2v. fin.
Qed.
∑(remove a i) = ∑a - a.i
Lemma vsum_vremove : forall {n} (a : @vec A (S n)) (i : 'I_(S n)),
vsum (vremove a i) = vsum a - a.[i].
Proof.
intros. pose proof (fin2nat_lt i).
rewrite (vremove_eq_vremove' (Azero:=Azero)).
unfold vremove'. unfold vsum.
replace n with (i + (n - i))%nat at 1 by lia.
replace (S n) with (i + (S (n - i)))%nat at 3 by lia.
rewrite !seqsum_plusIdx. rewrite seqsumS_head.
match goal with
| |- _ = ?d + (?e + ?f) - ?g => replace (d + (e + f) - g) with (d + f) end.
- f_equal.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
- agroup. unfold v2f.
replace (i + O)%nat with (fin2nat i) by lia. fin. agroup.
Qed.
End vsum_vinsert_vremove.
vsum (vremove a i) = vsum a - a.[i].
Proof.
intros. pose proof (fin2nat_lt i).
rewrite (vremove_eq_vremove' (Azero:=Azero)).
unfold vremove'. unfold vsum.
replace n with (i + (n - i))%nat at 1 by lia.
replace (S n) with (i + (S (n - i)))%nat at 3 by lia.
rewrite !seqsum_plusIdx. rewrite seqsumS_head.
match goal with
| |- _ = ?d + (?e + ?f) - ?g => replace (d + (e + f) - g) with (d + f) end.
- f_equal.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
+ apply seqsum_eq; intros. unfold v2f,f2v. fin.
- agroup. unfold v2f.
replace (i + O)%nat with (fin2nat i) by lia. fin. agroup.
Qed.
End vsum_vinsert_vremove.
Extension for `vsum`
Section vsum_ext.
Context `{HAMonoidA : AMonoid}.
Context `{HAMonoidB : AMonoid B Badd Bzero}.
Context (cmul : A -> B -> B).
Infix "+A" := Aadd (at level 50).
Infix "+B" := Badd (at level 50).
Infix "*" := cmul.
Notation vsumA := (@vsum _ Aadd Azero).
Notation vsumB := (@vsum _ Badd Bzero).
Context `{HAMonoidA : AMonoid}.
Context `{HAMonoidB : AMonoid B Badd Bzero}.
Context (cmul : A -> B -> B).
Infix "+A" := Aadd (at level 50).
Infix "+B" := Badd (at level 50).
Infix "*" := cmul.
Notation vsumA := (@vsum _ Aadd Azero).
Notation vsumB := (@vsum _ Badd Bzero).
∑(x*ai) = x * a1 + ... + x * ai = x * (a1 + ... + ai) = x * ∑(ai)
Section form1.
Context (cmul_zero_keep : forall x : A, x * Bzero = Bzero).
Context (cmul_badd : forall (x : A) (y1 y2 : B), x * (y1 +B y2) = (x * y1) +B (x * y2)).
Lemma vsum_cmul_l_ext : forall {n} (x : A) (a : @vec B n),
x * vsumB a = vsumB (fun i => x * a.[i]).
Proof.
intros. unfold vsumB. rewrite seqsum_cmul_l_ext; auto.
apply seqsum_eq; intros. rewrite !nth_v2f with (H:=H). auto.
Qed.
End form1.
Context (cmul_zero_keep : forall x : A, x * Bzero = Bzero).
Context (cmul_badd : forall (x : A) (y1 y2 : B), x * (y1 +B y2) = (x * y1) +B (x * y2)).
Lemma vsum_cmul_l_ext : forall {n} (x : A) (a : @vec B n),
x * vsumB a = vsumB (fun i => x * a.[i]).
Proof.
intros. unfold vsumB. rewrite seqsum_cmul_l_ext; auto.
apply seqsum_eq; intros. rewrite !nth_v2f with (H:=H). auto.
Qed.
End form1.
∑(ai*x) = a1 * x + ... + ai * x = (a1 + ... + ai) * b = ∑(ai) * x
Section form2.
Context (cmul_zero_keep : forall x : B, Azero * x = Bzero).
Context (cmul_aadd : forall (x1 x2 : A) (y : B), (x1 +A x2) * y = (x1 * y) +B (x2 * y)).
Lemma vsum_cmul_r_ext : forall {n} (x : B) (a : @vec A n),
vsumA a * x = vsumB (fun i => a.[i] * x).
Proof.
intros. unfold vsumB. rewrite seqsum_cmul_r_ext; auto.
apply seqsum_eq; intros. rewrite !nth_v2f with (H:=H). auto.
Qed.
End form2.
End vsum_ext.
Context (cmul_zero_keep : forall x : B, Azero * x = Bzero).
Context (cmul_aadd : forall (x1 x2 : A) (y : B), (x1 +A x2) * y = (x1 * y) +B (x2 * y)).
Lemma vsum_cmul_r_ext : forall {n} (x : B) (a : @vec A n),
vsumA a * x = vsumB (fun i => a.[i] * x).
Proof.
intros. unfold vsumB. rewrite seqsum_cmul_r_ext; auto.
apply seqsum_eq; intros. rewrite !nth_v2f with (H:=H). auto.
Qed.
End form2.
End vsum_ext.
Section vprod.
Context `{HARing : ARing}.
Infix "*" := Amul : A_scope.
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Notation seqprod := (@seqprod _ Amul 1).
Context `{HARing : ARing}.
Infix "*" := Amul : A_scope.
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Notation seqprod := (@seqprod _ Amul 1).
Πa = a.0 * a.1 * ... * a.(n-1)
Definition vprod {n} (a : @vec A n) := seqprod n (v2f 0 a).
Notation "\prod a" := (vprod a) : vec_scope.
Notation "\prod a" := (vprod a) : vec_scope.
(∀ i, a.i = b.i) -> Πa = Πb
Lemma vprod_eq : forall {n} (a b : @vec A n), (forall i, a.[i] = b.[i]) -> vprod a = vprod b.
Proof.
intros. unfold vprod. apply seqprod_eq; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
Proof.
intros. unfold vprod. apply seqprod_eq; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
(∀ i, a.i = 1) -> Πa = 1
Lemma vprod_eq1: forall {n} (a : @vec A n), (forall i, a.[i] = 1) -> vprod a = 1.
Proof.
intros. unfold vprod. apply seqprod_eq1; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
Proof.
intros. unfold vprod. apply seqprod_eq1; intros.
rewrite !nth_v2f with (H:=H0). apply H.
Qed.
`vprod` of (S n) elements, equal to multiplication of Prod and tail
Lemma vprodS_tail : forall {n} (a : @vec A (S n)),
vprod a = vprod (fun i => a.[fSuccRange i]) * a.[nat2finS n].
Proof.
intros. unfold vprod. rewrite seqprodS_tail. f_equal.
- apply seqprod_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRange_nat2fin. auto.
- erewrite nth_v2f. erewrite nat2finS_eq. auto.
Unshelve. all: try lia.
Qed.
vprod a = vprod (fun i => a.[fSuccRange i]) * a.[nat2finS n].
Proof.
intros. unfold vprod. rewrite seqprodS_tail. f_equal.
- apply seqprod_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRange_nat2fin. auto.
- erewrite nth_v2f. erewrite nat2finS_eq. auto.
Unshelve. all: try lia.
Qed.
`vprod` of (S n) elements, equal to multiplication of head and Prod
Lemma vprodS_head : forall {n} (a : @vec A (S n)),
vprod a = a.[nat2finS 0] * vprod (fun i => a.[fSuccRangeS i]).
Proof.
intros. unfold vprod. rewrite seqprodS_head; auto. f_equal.
apply seqprod_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRangeS_nat2fin. auto.
Unshelve. lia. auto.
Qed.
vprod a = a.[nat2finS 0] * vprod (fun i => a.[fSuccRangeS i]).
Proof.
intros. unfold vprod. rewrite seqprodS_head; auto. f_equal.
apply seqprod_eq; intros. erewrite !nth_v2f. f_equal.
erewrite fSuccRangeS_nat2fin. auto.
Unshelve. lia. auto.
Qed.
`vprod` which only one item is non-one, then got this item.
Lemma vprod_unique : forall {n} (a : @vec A n) (x : A) i,
a.[i] = x -> (forall j, i <> j -> a.[j] = 1) -> vprod a = x.
Proof.
intros. unfold vprod. apply seqprod_unique with (i:=i); auto; fin.
- rewrite <- H. rewrite nth_v2f with (H:=fin2nat_lt _); fin.
- intros. unfold v2f. fin.
specialize (H0 (nat2fin j E)). rewrite <- H0; auto.
intro; destruct H2; subst. fin.
Qed.
a.[i] = x -> (forall j, i <> j -> a.[j] = 1) -> vprod a = x.
Proof.
intros. unfold vprod. apply seqprod_unique with (i:=i); auto; fin.
- rewrite <- H. rewrite nth_v2f with (H:=fin2nat_lt _); fin.
- intros. unfold v2f. fin.
specialize (H0 (nat2fin j E)). rewrite <- H0; auto.
intro; destruct H2; subst. fin.
Qed.
`vprod` of the m+n elements equal to multiplication of two parts.
Π0,(m+n) a = Π0,m(fun i=>ai) * Πm,m+n (fun i=>am+i)
Lemma vprod_plusIdx : forall m n (a : @vec A (m + n)),
vprod a = vprod (fun i => a.[fin2AddRangeR i]) *
vprod (fun i => a.[fin2AddRangeAddL i]).
Proof.
intros. unfold vprod. rewrite seqprod_plusIdx. f_equal.
- apply seqprod_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
- apply seqprod_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
vprod a = vprod (fun i => a.[fin2AddRangeR i]) *
vprod (fun i => a.[fin2AddRangeAddL i]).
Proof.
intros. unfold vprod. rewrite seqprod_plusIdx. f_equal.
- apply seqprod_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
- apply seqprod_eq; intros. erewrite !nth_v2f. f_equal. apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
`vprod` of the m+n elements equal to multiplication of two parts.
(i < m -> a.i = b.i) ->
(i < n -> a.(m+i) = c.i) ->
Π0,(m+n) a = Π0,m b * Πm,m+n c.
Lemma vprod_plusIdx_ext : forall m n (a : @vec A (m + n)) (b : @vec A m) (c : @vec A n),
(forall i : 'I_m, a.[fin2AddRangeR i] = b.[i]) ->
(forall i : 'I_n, a.[fin2AddRangeAddL i] = c.[i]) ->
vprod a = vprod b * vprod c.
Proof.
intros. unfold vprod. rewrite seqprod_plusIdx. f_equal.
- apply seqprod_eq; intros. erewrite !nth_v2f. rewrite <- H. f_equal.
apply fin_eq_iff; auto.
- apply seqprod_eq; intros. erewrite !nth_v2f. rewrite <- H0. f_equal.
apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
End vprod.
Arguments vprod {A} Azero Amul Aone {n}.
(forall i : 'I_m, a.[fin2AddRangeR i] = b.[i]) ->
(forall i : 'I_n, a.[fin2AddRangeAddL i] = c.[i]) ->
vprod a = vprod b * vprod c.
Proof.
intros. unfold vprod. rewrite seqprod_plusIdx. f_equal.
- apply seqprod_eq; intros. erewrite !nth_v2f. rewrite <- H. f_equal.
apply fin_eq_iff; auto.
- apply seqprod_eq; intros. erewrite !nth_v2f. rewrite <- H0. f_equal.
apply fin_eq_iff; auto.
Unshelve. all: try lia.
Qed.
End vprod.
Arguments vprod {A} Azero Amul Aone {n}.
Section vadd.
Context `{AMonoid}.
Infix "+" := Aadd : A_scope.
Notation vec := (@vec A).
Notation vzero := (vzero Azero).
Definition vadd {n} (a b : vec n) : vec n := vmap2 Aadd a b.
Infix "+" := vadd : vec_scope.
Context `{AMonoid}.
Infix "+" := Aadd : A_scope.
Notation vec := (@vec A).
Notation vzero := (vzero Azero).
Definition vadd {n} (a b : vec n) : vec n := vmap2 Aadd a b.
Infix "+" := vadd : vec_scope.
(a + b) + c = a + (b + c)
Lemma vadd_assoc : forall {n} (a b c : vec n), (a + b) + c = a + (b + c).
Proof. intros. apply vmap2_assoc. Qed.
Proof. intros. apply vmap2_assoc. Qed.
a + b = b + a
0 + a = a
Lemma vadd_0_l : forall {n} (a : vec n), vzero + a = a.
Proof.
intros. apply veq_iff_vnth; intros. unfold vadd. rewrite vnth_vmap2.
rewrite vnth_vzero. amonoid.
Qed.
Proof.
intros. apply veq_iff_vnth; intros. unfold vadd. rewrite vnth_vmap2.
rewrite vnth_vzero. amonoid.
Qed.
a + 0 = a
Lemma vadd_0_r : forall {n} (a : vec n), a + vzero = a.
Proof. intros. rewrite vadd_comm. apply vadd_0_l. Qed.
Proof. intros. rewrite vadd_comm. apply vadd_0_l. Qed.
<vadd,vzero> is an abelian monoid
#[export] Instance vadd_AMonoid : forall n, AMonoid (@vadd n) vzero.
Proof.
intros. repeat constructor; intros;
try apply vadd_assoc;
try apply vadd_comm;
try apply vadd_0_l;
try apply vadd_0_r.
Qed.
Proof.
intros. repeat constructor; intros;
try apply vadd_assoc;
try apply vadd_comm;
try apply vadd_0_l;
try apply vadd_0_r.
Qed.
(a + b).i = a.i + b.i
Lemma vnth_vadd : forall {n} (a b : vec n) i, (a + b).[i] = (a.[i] + b.[i])%A.
Proof. intros. unfold vadd. rewrite vnth_vmap2. auto. Qed.
Proof. intros. unfold vadd. rewrite vnth_vmap2. auto. Qed.
(a + b) + c = (a + c) + b
Lemma vadd_perm : forall {n} (a b c : vec n), (a + b) + c = (a + c) + b.
Proof. intros. rewrite !associative. f_equal. apply commutative. Qed.
End vadd.
Section vadd_extra.
Context `{AMonoid}.
Proof. intros. rewrite !associative. f_equal. apply commutative. Qed.
End vadd.
Section vadd_extra.
Context `{AMonoid}.
(∑a).j = ∑(a.j), which a is a vector of vector
Lemma vnth_vsum : forall {r c} (a : @vec (@vec A c) r) j,
(@vsum _ (@vadd _ Aadd _) (vzero Azero) _ a).[j] =
@vsum _ Aadd Azero _ (fun i => a.[i].[j]).
Proof.
induction r; intros; auto.
rewrite !vsumS_tail. rewrite vnth_vadd. rewrite IHr. auto.
Qed.
End vadd_extra.
(@vsum _ (@vadd _ Aadd _) (vzero Azero) _ a).[j] =
@vsum _ Aadd Azero _ (fun i => a.[i].[j]).
Proof.
induction r; intros; auto.
rewrite !vsumS_tail. rewrite vnth_vadd. rewrite IHr. auto.
Qed.
End vadd_extra.
Section vopp.
Context `{AGroup A Aadd Azero}.
Notation "- a" := (Aopp a) : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Infix "+" := vadd : vec_scope.
Definition vopp {n} (a : vec n) : vec n := vmap Aopp a.
Notation "- a" := (vopp a) : vec_scope.
Context `{AGroup A Aadd Azero}.
Notation "- a" := (Aopp a) : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Infix "+" := vadd : vec_scope.
Definition vopp {n} (a : vec n) : vec n := vmap Aopp a.
Notation "- a" := (vopp a) : vec_scope.
(- a).i = - (a.i)
Lemma vnth_vopp : forall {n} (a : vec n) i, (- a).[i] = (- (a.[i]))%A.
Proof. intros. cbv. auto. Qed.
Proof. intros. cbv. auto. Qed.
- a + a = 0
Lemma vadd_vopp_l : forall {n} (a : vec n), (- a) + a = vzero.
Proof. intros. apply veq_iff_vnth; intros. cbv. agroup. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. agroup. Qed.
a + - a = 0
Lemma vadd_vopp_r : forall {n} (a : vec n), a + (- a) = vzero.
Proof. intros. apply veq_iff_vnth; intros. cbv. agroup. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. agroup. Qed.
<vadd,vzero,vopp> is an abelian group
#[export] Instance vadd_AGroup : forall n, @AGroup (vec n) vadd vzero vopp.
Proof.
intros. repeat constructor; intros; try apply vadd_AMonoid.
apply vadd_vopp_l. apply vadd_vopp_r.
Qed.
Proof.
intros. repeat constructor; intros; try apply vadd_AMonoid.
apply vadd_vopp_l. apply vadd_vopp_r.
Qed.
- (- a) = a
Lemma vopp_vopp : forall {n} (a : vec n), - (- a) = a.
Proof.
intros. pose proof (vadd_AGroup n). agroup.
Qed.
Proof.
intros. pose proof (vadd_AGroup n). agroup.
Qed.
a = - b <-> - a = b
Lemma vopp_exchange : forall {n} (a b : vec n), a = - b <-> - a = b.
Proof. intros. split; intros; subst; rewrite vopp_vopp; auto. Qed.
Proof. intros. split; intros; subst; rewrite vopp_vopp; auto. Qed.
- (vzero) = vzero
Lemma vopp_vzero : forall {n:nat}, - (@Vector.vzero _ Azero n) = vzero.
Proof. intros. apply group_opp_0. Qed.
Proof. intros. apply group_opp_0. Qed.
- a = vzero <-> a = vzero
Lemma vopp_eq0_iff : forall {n} (a : vec n), - a = vzero <-> a = vzero.
Proof.
intros. split; intros; rewrite veq_iff_vnth in *; intros;
specialize (H0 i); rewrite vnth_vzero, vnth_vopp in *.
- apply group_opp_eq0_iff; auto.
- apply group_opp_eq0_iff; auto.
Qed.
Proof.
intros. split; intros; rewrite veq_iff_vnth in *; intros;
specialize (H0 i); rewrite vnth_vzero, vnth_vopp in *.
- apply group_opp_eq0_iff; auto.
- apply group_opp_eq0_iff; auto.
Qed.
- (a + b) = (- a) + (- b)
Lemma vopp_vadd : forall {n} (a b : vec n), - (a + b) = (- a) + (- b).
Proof. intros. rewrite group_opp_distr. apply commutative. Qed.
End vopp.
Proof. intros. rewrite group_opp_distr. apply commutative. Qed.
End vopp.
Section vsub.
Context `{AGroup A Aadd Azero}.
Infix "+" := Aadd : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Context `{AGroup A Aadd Azero}.
Infix "+" := Aadd : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
(a - b).i = a.i - b.i
Lemma vnth_vsub : forall {n} (a b : vec n) i, (a - b).[i] = (a.[i] - b.[i])%A.
Proof. intros. cbv. auto. Qed.
Proof. intros. cbv. auto. Qed.
a - b = - (b - a)
Lemma vsub_comm : forall {n} (a b : vec n), a - b = - (b - a).
Proof.
intros. rewrite group_opp_distr. rewrite group_opp_opp. auto.
Qed.
Proof.
intros. rewrite group_opp_distr. rewrite group_opp_opp. auto.
Qed.
(a - b) - c = a - (b + c)
Lemma vsub_assoc : forall {n} (a b c : vec n), (a - b) - c = a - (b + c).
Proof.
intros. rewrite associative.
f_equal. rewrite group_opp_distr. apply commutative.
Qed.
Proof.
intros. rewrite associative.
f_equal. rewrite group_opp_distr. apply commutative.
Qed.
(a + b) - c = a + (b - c)
Lemma vsub_assoc1 : forall {n} (a b c : vec n), (a + b) - c = a + (b - c).
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
(a - b) - c = (a - c) - b
Lemma vsub_assoc2 : forall {n} (a b c : vec n), (a - b) - c = (a - c) - b.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
0 - a = - a
Lemma vsub_0_l : forall {n} (a : vec n), vzero - a = - a.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
a - 0 = a
Lemma vsub_0_r : forall {n} (a : vec n), a - vzero = a.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
a - a = 0
Lemma vsub_self : forall {n} (a : vec n), a - a = vzero.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
Proof. intros. pose proof (vadd_AGroup n). agroup. Qed.
a - b = 0 <-> a = b
Lemma vsub_eq0_iff_eq : forall {n} (a b : vec n), a - b = vzero <-> a = b.
Proof. intros. apply group_sub_eq0_iff_eq. Qed.
End vsub.
Proof. intros. apply group_sub_eq0_iff_eq. Qed.
End vsub.
Section vcmul.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + (-b))%V) : vec_scope.
Definition vcmul {n : nat} (x : A) (a : vec n) : vec n := vmap (fun y => Amul x y) a.
Infix "c*" := vcmul : vec_scope.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + (-b))%V) : vec_scope.
Definition vcmul {n : nat} (x : A) (a : vec n) : vec n := vmap (fun y => Amul x y) a.
Infix "c*" := vcmul : vec_scope.
(x .* a).i = x * a.i
Lemma vnth_vcmul : forall {n} (a : vec n) x i, (x c* a).[i] = x * (a.[i]).
Proof. intros. cbv. auto. Qed.
Proof. intros. cbv. auto. Qed.
x .* (y .* a) = (x * y) .* a
Lemma vcmul_assoc : forall {n} (a : vec n) x y,
x c* (y c* a) = (x * y)%A c* a.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
x c* (y c* a) = (x * y)%A c* a.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
x .* (y .* a) = y .* (x .* a)
Lemma vcmul_perm : forall {n} (a : vec n) x y,
x c* (y c* a) = y c* (x c* a).
Proof. intros. rewrite !vcmul_assoc. f_equal. ring. Qed.
x c* (y c* a) = y c* (x c* a).
Proof. intros. rewrite !vcmul_assoc. f_equal. ring. Qed.
(x + y) .* a = (x .* a) + (y .* a)
Lemma vcmul_add : forall {n} x y (a : vec n),
(x + y)%A c* a = (x c* a) + (y c* a).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
(x + y)%A c* a = (x c* a) + (y c* a).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
x .* (a + b) = (x .* a) + (x .* b)
Lemma vcmul_vadd : forall {n} x (a b : vec n),
x c* (a + b) = (x c* a) + (x c* b).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
x c* (a + b) = (x c* a) + (x c* b).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
0 .* a = vzero
Lemma vcmul_0_l : forall {n} (a : vec n), Azero c* a = vzero.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
a .* vzero = vzero
Lemma vcmul_0_r : forall {n} a, a c* vzero = (@Vector.vzero _ Azero n).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
1 .* a = a
Lemma vcmul_1_l : forall {n} (a : vec n), Aone c* a = a.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
- 1 .* a = - a
Lemma vcmul_neg1_l : forall {n} (a : vec n), (- Aone)%A c* a = - a.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
(- x) .* a = - (x .* a)
Lemma vcmul_opp : forall {n} x (a : vec n), (- x)%A c* a = - (x c* a).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
x .* (- a) = - (x .* a)
Lemma vcmul_vopp : forall {n} x (a : vec n), x c* (- a) = - (x c* a).
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
Proof. intros. apply veq_iff_vnth; intros. cbv. ring. Qed.
(- x) .* (- a) = x .* a
Lemma vcmul_opp_vopp : forall {n} x (a : vec n), (- x)%A c* (- a) = x c* a.
Proof. intros. rewrite vcmul_vopp, vcmul_opp. rewrite vopp_vopp. auto. Qed.
Proof. intros. rewrite vcmul_vopp, vcmul_opp. rewrite vopp_vopp. auto. Qed.
x .* (a - b) = (x .* a) - (x .* b)
Lemma vcmul_vsub : forall {n} x (a b : vec n), x c* (a - b) = (x c* a) - (x c* b).
Proof. intros. rewrite vcmul_vadd. rewrite vcmul_vopp. auto. Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
Proof. intros. rewrite vcmul_vadd. rewrite vcmul_vopp. auto. Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
a <> 0 -> b <> 0 -> x .* a = b -> x <> 0
Lemma vcmul_eq_imply_x_neq0 : forall {n} x (a b : vec n),
a <> vzero -> b <> vzero -> x c* a = b -> x <> Azero.
Proof.
intros. destruct (Aeqdec x Azero); auto. exfalso. subst.
rewrite vcmul_0_l in H0. easy.
Qed.
End AeqDec.
Section Dec_Field.
Context {AeqDec : Dec (@eq A)}.
Context `{HField : Field A Aadd Azero Aopp Amul Aone Ainv}.
a <> vzero -> b <> vzero -> x c* a = b -> x <> Azero.
Proof.
intros. destruct (Aeqdec x Azero); auto. exfalso. subst.
rewrite vcmul_0_l in H0. easy.
Qed.
End AeqDec.
Section Dec_Field.
Context {AeqDec : Dec (@eq A)}.
Context `{HField : Field A Aadd Azero Aopp Amul Aone Ainv}.
x .* a = 0 -> (x = 0) \/ (a = 0)
Lemma vcmul_eq0_imply_x0_or_v0 : forall {n} x (a : vec n),
x c* a = vzero -> (x = Azero) \/ (a = vzero).
Proof.
intros. destruct (Aeqdec x Azero); auto. right.
apply veq_iff_vnth; intros. rewrite veq_iff_vnth in H. specialize (H i).
cbv in H. cbv. apply field_mul_eq0_iff in H; auto. tauto.
Qed.
x c* a = vzero -> (x = Azero) \/ (a = vzero).
Proof.
intros. destruct (Aeqdec x Azero); auto. right.
apply veq_iff_vnth; intros. rewrite veq_iff_vnth in H. specialize (H i).
cbv in H. cbv. apply field_mul_eq0_iff in H; auto. tauto.
Qed.
x .* a = 0 -> a <> 0 -> x = 0
Corollary vcmul_eq0_imply_x0 : forall {n} x (a : vec n),
x c* a = vzero -> a <> vzero -> x = Azero.
Proof. intros. apply (vcmul_eq0_imply_x0_or_v0 x a) in H; tauto. Qed.
x c* a = vzero -> a <> vzero -> x = Azero.
Proof. intros. apply (vcmul_eq0_imply_x0_or_v0 x a) in H; tauto. Qed.
x .* a = 0 -> x <> 0 -> a = 0
Corollary vcmul_eq0_imply_v0 : forall {n} x (a : vec n),
x c* a = vzero -> x <> Azero -> a = vzero.
Proof. intros. apply (vcmul_eq0_imply_x0_or_v0 x a) in H; tauto. Qed.
x c* a = vzero -> x <> Azero -> a = vzero.
Proof. intros. apply (vcmul_eq0_imply_x0_or_v0 x a) in H; tauto. Qed.
x <> 0 -> a <> 0 -> x c* a <> 0
Corollary vcmul_neq0_neq0_neq0 : forall {n} x (a : vec n),
x <> Azero -> a <> vzero -> x c* a <> vzero.
Proof. intros. intro. apply vcmul_eq0_imply_x0_or_v0 in H1; tauto. Qed.
x <> Azero -> a <> vzero -> x c* a <> vzero.
Proof. intros. intro. apply vcmul_eq0_imply_x0_or_v0 in H1; tauto. Qed.
x .* a = a -> x = 1 \/ a = 0
Lemma vcmul_same_imply_x1_or_v0 : forall {n} x (a : vec n),
x c* a = a -> (x = Aone) \/ (a = vzero).
Proof.
intros. destruct (Aeqdec x Aone); auto. right.
apply veq_iff_vnth; intros. rewrite veq_iff_vnth in H. specialize (H i).
cbv in H. cbv. apply field_mul_eq_imply_a1_or_b0 in H; auto. tauto.
Qed.
x c* a = a -> (x = Aone) \/ (a = vzero).
Proof.
intros. destruct (Aeqdec x Aone); auto. right.
apply veq_iff_vnth; intros. rewrite veq_iff_vnth in H. specialize (H i).
cbv in H. cbv. apply field_mul_eq_imply_a1_or_b0 in H; auto. tauto.
Qed.
x = 1 \/ a = 0 -> x .* a = a
Lemma vcmul_same_if_x1_or_v0 : forall {n} x (a : vec n),
(x = Aone \/ a = vzero) -> x c* a = a.
Proof.
intros. destruct H; subst. apply vcmul_1_l; auto. apply vcmul_0_r; auto.
Qed.
(x = Aone \/ a = vzero) -> x c* a = a.
Proof.
intros. destruct H; subst. apply vcmul_1_l; auto. apply vcmul_0_r; auto.
Qed.
x .* a = a -> a <> 0 -> x = 1
Corollary vcmul_same_imply_x1 : forall {n} x (a : vec n),
x c* a = a -> a <> vzero -> x = Aone.
Proof. intros. apply (vcmul_same_imply_x1_or_v0 x a) in H; tauto. Qed.
x c* a = a -> a <> vzero -> x = Aone.
Proof. intros. apply (vcmul_same_imply_x1_or_v0 x a) in H; tauto. Qed.
x .* a = a -> x <> 1 -> a = 0
Corollary vcmul_same_imply_v0 : forall {n} x (a : vec n),
x c* a = a -> x <> Aone -> a = vzero.
Proof. intros. apply (vcmul_same_imply_x1_or_v0 x a) in H; tauto. Qed.
x c* a = a -> x <> Aone -> a = vzero.
Proof. intros. apply (vcmul_same_imply_x1_or_v0 x a) in H; tauto. Qed.
x .* a = y .* a -> (x = y \/ a = 0)
Lemma vcmul_sameV_imply_eqX_or_v0 : forall {n} x y (a : vec n),
x c* a = y c* a -> (x = y \/ a = vzero).
Proof.
intros. destruct (Aeqdec x y); auto. right. rewrite veq_iff_vnth in H.
rewrite veq_iff_vnth. intros. specialize (H i). rewrite !vnth_vcmul in H.
destruct (Aeqdec (a i) Azero); auto. apply field_mul_cancel_r in H; tauto.
Qed.
x c* a = y c* a -> (x = y \/ a = vzero).
Proof.
intros. destruct (Aeqdec x y); auto. right. rewrite veq_iff_vnth in H.
rewrite veq_iff_vnth. intros. specialize (H i). rewrite !vnth_vcmul in H.
destruct (Aeqdec (a i) Azero); auto. apply field_mul_cancel_r in H; tauto.
Qed.
x .* a = y * a -> a <> 0 -> x = y
Corollary vcmul_sameV_imply_eqX : forall {n} x y (a : vec n),
x c* a = y c* a -> a <> vzero -> x = y.
Proof. intros. apply vcmul_sameV_imply_eqX_or_v0 in H; tauto. Qed.
x c* a = y c* a -> a <> vzero -> x = y.
Proof. intros. apply vcmul_sameV_imply_eqX_or_v0 in H; tauto. Qed.
x .* a = y .* a -> x <> y -> a = 0
Corollary vcmul_sameV_imply_v0 : forall {n} x y (a : vec n),
x c* a = y c* a -> x <> y -> a = vzero.
Proof. intros. apply vcmul_sameV_imply_eqX_or_v0 in H; tauto. Qed.
End Dec_Field.
End vcmul.
x c* a = y c* a -> x <> y -> a = vzero.
Proof. intros. apply vcmul_sameV_imply_eqX_or_v0 in H; tauto. Qed.
End Dec_Field.
End vcmul.
Section vdot.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "+" := Aadd : A_scope.
Notation "0" := Azero.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Infix "*" := Amul : A_scope.
Notation "1" := Aone.
Notation "a ²" := (a * a) : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation seqsum := (@seqsum _ Aadd Azero).
Notation vsum := (@vsum _ Aadd Azero).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Definition vdot {n : nat} (a b : vec n) : A := vsum (vmap2 Amul a b).
Notation "< a , b >" := (vdot a b) : vec_scope.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "+" := Aadd : A_scope.
Notation "0" := Azero.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Infix "*" := Amul : A_scope.
Notation "1" := Aone.
Notation "a ²" := (a * a) : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation seqsum := (@seqsum _ Aadd Azero).
Notation vsum := (@vsum _ Aadd Azero).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Definition vdot {n : nat} (a b : vec n) : A := vsum (vmap2 Amul a b).
Notation "< a , b >" := (vdot a b) : vec_scope.
<a, b> = <b, a>
Lemma vdot_comm : forall {n} (a b : vec n), <a, b> = <b, a>.
Proof. intros. apply vsum_eq; intros. rewrite vmap2_comm; auto. Qed.
Proof. intros. apply vsum_eq; intros. rewrite vmap2_comm; auto. Qed.
<vzero, a> = vzero
Lemma vdot_0_l : forall {n} (a : vec n), <vzero, a> = Azero.
Proof.
intros. unfold vdot. apply vsum_eq0; intros.
rewrite vnth_vmap2, vnth_vzero. ring.
Qed.
Proof.
intros. unfold vdot. apply vsum_eq0; intros.
rewrite vnth_vmap2, vnth_vzero. ring.
Qed.
<a, vzero> = vzero
Lemma vdot_0_r : forall {n} (a : vec n), <a, vzero> = Azero.
Proof. intros. rewrite vdot_comm, vdot_0_l; auto. Qed.
Proof. intros. rewrite vdot_comm, vdot_0_l; auto. Qed.
<a + b, c> = <a, c> + <b, c>
Lemma vdot_vadd_l : forall {n} (a b c : vec n), <a + b, c> = (<a, c> + <b, c>)%A.
Proof.
intros. unfold vdot. rewrite vsum_add; intros.
apply vsum_eq; intros. rewrite !vnth_vmap2. ring.
Qed.
Proof.
intros. unfold vdot. rewrite vsum_add; intros.
apply vsum_eq; intros. rewrite !vnth_vmap2. ring.
Qed.
<a, b + c> = <a, b> + <a, c>
Lemma vdot_vadd_r : forall {n} (a b c : vec n), <a, b + c> = (<a, b> + <a, c>)%A.
Proof.
intros. rewrite vdot_comm. rewrite vdot_vadd_l. f_equal; apply vdot_comm.
Qed.
Proof.
intros. rewrite vdot_comm. rewrite vdot_vadd_l. f_equal; apply vdot_comm.
Qed.
<- a, b> = - <a, b>
Lemma vdot_vopp_l : forall {n} (a b : vec n), < - a, b> = (- <a, b>)%A.
Proof.
intros. unfold vdot. rewrite vsum_opp; intros.
apply vsum_eq; intros. rewrite !vnth_vmap2. rewrite vnth_vopp. ring.
Qed.
Proof.
intros. unfold vdot. rewrite vsum_opp; intros.
apply vsum_eq; intros. rewrite !vnth_vmap2. rewrite vnth_vopp. ring.
Qed.
<a, - b> = - <a, b>
Lemma vdot_vopp_r : forall {n} (a b : vec n), <a, - b> = (- <a, b>)%A.
Proof. intros. rewrite vdot_comm, vdot_vopp_l, vdot_comm. auto. Qed.
Proof. intros. rewrite vdot_comm, vdot_vopp_l, vdot_comm. auto. Qed.
<a - b, c> = <a, c> - <b, c>
Lemma vdot_vsub_l : forall {n} (a b c : vec n), <a - b, c> = (<a, c> - <b, c>)%A.
Proof. intros. rewrite vdot_vadd_l. f_equal. apply vdot_vopp_l. Qed.
Proof. intros. rewrite vdot_vadd_l. f_equal. apply vdot_vopp_l. Qed.
<a, b - c> = <a, b> - <a, c>
Lemma vdot_vsub_r : forall {n} (a b c : vec n), <a, b - c> = (<a, b> - <a, c>)%A.
Proof. intros. rewrite vdot_vadd_r. f_equal. apply vdot_vopp_r. Qed.
Proof. intros. rewrite vdot_vadd_r. f_equal. apply vdot_vopp_r. Qed.
<x .* a, b> = x .* <a, b>
Lemma vdot_vcmul_l : forall {n} (a b : vec n) x, <x c* a, b> = x * <a, b>.
Proof.
intros. unfold vdot. rewrite vsum_cmul_l; intros.
apply vsum_eq; intros. rewrite !vnth_vmap2. rewrite vnth_vcmul. ring.
Qed.
Proof.
intros. unfold vdot. rewrite vsum_cmul_l; intros.
apply vsum_eq; intros. rewrite !vnth_vmap2. rewrite vnth_vcmul. ring.
Qed.
<a, x .* b> = x .* <a, b>
Lemma vdot_vcmul_r : forall {n} (a b : vec n) x, <a, x c* b> = x * <a, b>.
Proof.
intros. rewrite vdot_comm. rewrite vdot_vcmul_l. f_equal; apply vdot_comm.
Qed.
Proof.
intros. rewrite vdot_comm. rewrite vdot_vcmul_l. f_equal; apply vdot_comm.
Qed.
<a, veye i> = a i
Lemma vdot_veye_r : forall {n} (a : vec n) i, <a, veye 0 1 i> = a i.
Proof.
intros. apply vsum_unique with (i:=i).
- rewrite vnth_vmap2. rewrite vnth_veye_eq. rewrite identityRight; auto.
- intros. rewrite vnth_vmap2. rewrite vnth_veye_neq; auto.
rewrite ring_mul_0_r; auto.
Qed.
Proof.
intros. apply vsum_unique with (i:=i).
- rewrite vnth_vmap2. rewrite vnth_veye_eq. rewrite identityRight; auto.
- intros. rewrite vnth_vmap2. rewrite vnth_veye_neq; auto.
rewrite ring_mul_0_r; auto.
Qed.
<veye i, a> = a i
Lemma vdot_veye_l : forall {n} (a : vec n) i, <veye 0 1 i, a> = a i.
Proof. intros. rewrite vdot_comm. apply vdot_veye_r. Qed.
Proof. intros. rewrite vdot_comm. apply vdot_veye_r. Qed.
<vconsT a x, vconsT b y> = <a, b> + x * y
Lemma vdot_vconsT_vconsT : forall {n} (a b : vec n) (x y : A),
<vconsT a x, vconsT b y> = (<a, b> + x * y)%A.
Proof.
intros. unfold vdot.
rewrite vmap2_vconsT_vconsT.
rewrite vsum_vconsT. auto.
Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
<vconsT a x, vconsT b y> = (<a, b> + x * y)%A.
Proof.
intros. unfold vdot.
rewrite vmap2_vconsT_vconsT.
rewrite vsum_vconsT. auto.
Qed.
Section AeqDec.
Context {AeqDec : Dec (@eq A)}.
<a, b> <> 0 -> a <> 0
Lemma vdot_neq0_imply_neq0_l : forall {n} (a b : vec n), <a, b> <> 0 -> a <> vzero.
Proof.
intros. destruct (Aeqdec a vzero); auto. subst. rewrite vdot_0_l in H. easy.
Qed.
Proof.
intros. destruct (Aeqdec a vzero); auto. subst. rewrite vdot_0_l in H. easy.
Qed.
<a, b> <> 0 -> b <> 0
Lemma vdot_neq0_imply_neq0_r : forall {n} (a b : vec n), <a, b> <> 0 -> b <> vzero.
Proof.
intros. destruct (Aeqdec b vzero); auto. subst. rewrite vdot_0_r in H. easy.
Qed.
Proof.
intros. destruct (Aeqdec b vzero); auto. subst. rewrite vdot_0_r in H. easy.
Qed.
(∀ c, <a, c> = <b, c>) -> a = b
Lemma vdot_cancel_r : forall {n} (a b : vec n),
(forall c : vec n, <a, c> = <b, c>) -> a = b.
Proof.
intros. destruct (Aeqdec a b) as [H1|H1]; auto. exfalso.
apply vneq_iff_exist_vnth_neq in H1. destruct H1 as [i H1].
specialize (H (veye 0 1 i)). rewrite !vdot_veye_r in H. easy.
Qed.
(forall c : vec n, <a, c> = <b, c>) -> a = b.
Proof.
intros. destruct (Aeqdec a b) as [H1|H1]; auto. exfalso.
apply vneq_iff_exist_vnth_neq in H1. destruct H1 as [i H1].
specialize (H (veye 0 1 i)). rewrite !vdot_veye_r in H. easy.
Qed.
(∀ c, <c, a> = <c, b>) -> a = b
Lemma vdot_cancel_l : forall {n} (a b : vec n),
(forall c : vec n, <c, a> = <c, b>) -> a = b.
Proof.
intros. apply vdot_cancel_r. intros. rewrite !(vdot_comm _ c). auto.
Qed.
End AeqDec.
Section OrderedARing.
Context `{HOrderedARing : OrderedARing A Aadd Azero Aopp Amul Aone}.
Infix "<" := Alt.
Infix "<=" := Ale.
(forall c : vec n, <c, a> = <c, b>) -> a = b.
Proof.
intros. apply vdot_cancel_r. intros. rewrite !(vdot_comm _ c). auto.
Qed.
End AeqDec.
Section OrderedARing.
Context `{HOrderedARing : OrderedARing A Aadd Azero Aopp Amul Aone}.
Infix "<" := Alt.
Infix "<=" := Ale.
0 <= <a, a>
Lemma vdot_ge0 : forall {n} (a : vec n), 0 <= (<a, a>).
Proof.
intros. unfold vdot, vsum, vmap2, v2f. apply seqsum_ge0; intros.
fin. apply sqr_ge0.
Qed.
Proof.
intros. unfold vdot, vsum, vmap2, v2f. apply seqsum_ge0; intros.
fin. apply sqr_ge0.
Qed.
<a, b> ² <= <a, a> * <b, b>
Lemma vdot_sqr_le : forall {n} (a b : vec n), (<a, b> ²) <= <a, a> * <b, b>.
Proof.
intros. unfold vdot,vsum,vmap2. destruct n.
- cbv. apply le_refl.
-
rewrite seqsum_eq with (f:=v2f 0 (fun i=>a i * b i)) (g:=fun i => a #i * b #i).
rewrite seqsum_eq with (f:=v2f 0 (fun i=>a i * a i)) (g:=fun i => a #i * a #i).
rewrite seqsum_eq with (f:=v2f 0 (fun i=>b i * b i)) (g:=fun i => b #i * b #i).
+ apply seqsum_SqrMul_le_MulSqr.
+ intros. erewrite nth_v2f. erewrite nat2finS_eq; auto.
+ intros. erewrite nth_v2f. erewrite nat2finS_eq; auto.
+ intros. erewrite nth_v2f. erewrite nat2finS_eq; auto.
Unshelve. all: auto.
Qed.
Proof.
intros. unfold vdot,vsum,vmap2. destruct n.
- cbv. apply le_refl.
-
rewrite seqsum_eq with (f:=v2f 0 (fun i=>a i * b i)) (g:=fun i => a #i * b #i).
rewrite seqsum_eq with (f:=v2f 0 (fun i=>a i * a i)) (g:=fun i => a #i * a #i).
rewrite seqsum_eq with (f:=v2f 0 (fun i=>b i * b i)) (g:=fun i => b #i * b #i).
+ apply seqsum_SqrMul_le_MulSqr.
+ intros. erewrite nth_v2f. erewrite nat2finS_eq; auto.
+ intros. erewrite nth_v2f. erewrite nat2finS_eq; auto.
+ intros. erewrite nth_v2f. erewrite nat2finS_eq; auto.
Unshelve. all: auto.
Qed.
(v i)² <= <a, a>
Lemma vnth_sqr_le_vdot : forall {n} (a : vec n) (i : 'I_n), (a i) ² <= <a, a>.
Proof.
intros. unfold vdot.
pose ((fun i => (a.[i]) * (a.[i])) : vec n) as u.
replace (a i)² with (u i). replace (vmap2 Amul a a) with u.
apply vsum_ge_any.
- intros. unfold u. apply sqr_ge0.
- unfold u. auto.
- unfold u. auto.
Qed.
End OrderedARing.
Section OrderedField_Dec.
Context {AeqDec : Dec (@eq A)}.
Context `{HOrderedField : OrderedField A Aadd Azero Aopp Amul Aone}.
Notation "/ a" := (Ainv a).
Notation Adiv x y := (x * / y).
Infix "/" := Adiv.
Infix "<" := Alt.
Infix "<=" := Ale.
Proof.
intros. unfold vdot.
pose ((fun i => (a.[i]) * (a.[i])) : vec n) as u.
replace (a i)² with (u i). replace (vmap2 Amul a a) with u.
apply vsum_ge_any.
- intros. unfold u. apply sqr_ge0.
- unfold u. auto.
- unfold u. auto.
Qed.
End OrderedARing.
Section OrderedField_Dec.
Context {AeqDec : Dec (@eq A)}.
Context `{HOrderedField : OrderedField A Aadd Azero Aopp Amul Aone}.
Notation "/ a" := (Ainv a).
Notation Adiv x y := (x * / y).
Infix "/" := Adiv.
Infix "<" := Alt.
Infix "<=" := Ale.
a = 0 -> <a, a> = 0
Lemma vdot_same_eq0_if_vzero : forall {n} (a : vec n), a = vzero -> <a, a> = 0.
Proof. intros. subst. rewrite vdot_0_l; auto. Qed.
Proof. intros. subst. rewrite vdot_0_l; auto. Qed.
<a, a> = 0 -> a = 0
Lemma vdot_same_eq0_then_vzero : forall {n} (a : vec n), <a, a> = 0 -> a = vzero.
Proof.
intros. unfold vdot,vsum in H. apply veq_iff_vnth; intros.
apply seqsum_eq0_imply_seq0 with (i:=i) in H; fin.
- rewrite nth_v2f with (H:=fin2nat_lt _) in H.
rewrite nat2fin_fin2nat in H. rewrite vnth_vmap2 in H.
apply field_sqr_eq0_reg in H; auto.
- intros. rewrite nth_v2f with (H:=H0). rewrite vnth_vmap2. apply sqr_ge0.
Qed.
Proof.
intros. unfold vdot,vsum in H. apply veq_iff_vnth; intros.
apply seqsum_eq0_imply_seq0 with (i:=i) in H; fin.
- rewrite nth_v2f with (H:=fin2nat_lt _) in H.
rewrite nat2fin_fin2nat in H. rewrite vnth_vmap2 in H.
apply field_sqr_eq0_reg in H; auto.
- intros. rewrite nth_v2f with (H:=H0). rewrite vnth_vmap2. apply sqr_ge0.
Qed.
a <> vzero -> <a, a> <> 0
Lemma vdot_same_neq0_if_vnonzero : forall {n} (a : vec n), a <> vzero -> <a, a> <> 0.
Proof. intros. intro. apply vdot_same_eq0_then_vzero in H0; auto. Qed.
Proof. intros. intro. apply vdot_same_eq0_then_vzero in H0; auto. Qed.
<a, a> <> 0 -> a <> vzero
Lemma vdot_same_neq0_then_vnonzero : forall {n} (a : vec n), <a, a> <> 0 -> a <> vzero.
Proof. intros. intro. apply vdot_same_eq0_if_vzero in H0; auto. Qed.
Proof. intros. intro. apply vdot_same_eq0_if_vzero in H0; auto. Qed.
0 < <a, a>
Lemma vdot_gt0 : forall {n} (a : vec n), a <> vzero -> Azero < (<a, a>).
Proof.
intros. apply vdot_same_neq0_if_vnonzero in H. pose proof (vdot_ge0 a).
apply lt_if_le_and_neq; auto.
Qed.
Proof.
intros. apply vdot_same_neq0_if_vnonzero in H. pose proof (vdot_ge0 a).
apply lt_if_le_and_neq; auto.
Qed.
<a, b>² / (<a, a> * <b, b>) <= 1.
Lemma vdot_sqr_le_form2 : forall {n} (a b : vec n),
a <> vzero -> b <> vzero -> <a, b>² / (<a, a> * <b, b>) <= 1.
Proof.
intros.
pose proof (vdot_gt0 a H). pose proof (vdot_gt0 b H0).
pose proof (vdot_sqr_le a b).
destruct (Aeqdec (<a, b>) 0) as [H4|H4].
- rewrite H4. ring_simplify. apply le_0_1.
- apply le_imply_div_le_1 in H3; auto. apply sqr_gt0. auto.
Qed.
End OrderedField_Dec.
End vdot.
Section vdot_extra.
Context `{HARing : ARing}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "*" := Amul : A_scope.
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation "< a , b >" := (vdot a b) : vec_scope.
a <> vzero -> b <> vzero -> <a, b>² / (<a, a> * <b, b>) <= 1.
Proof.
intros.
pose proof (vdot_gt0 a H). pose proof (vdot_gt0 b H0).
pose proof (vdot_sqr_le a b).
destruct (Aeqdec (<a, b>) 0) as [H4|H4].
- rewrite H4. ring_simplify. apply le_0_1.
- apply le_imply_div_le_1 in H3; auto. apply sqr_gt0. auto.
Qed.
End OrderedField_Dec.
End vdot.
Section vdot_extra.
Context `{HARing : ARing}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "*" := Amul : A_scope.
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation "< a , b >" := (vdot a b) : vec_scope.
< <a,D>, b> = <a, <D,b> >
Lemma vdot_assoc :
forall {r c} (a : @vec A c) (D : @vec (@vec A r) c) (b : @vec A r),
vdot (fun j => vdot a (fun i => D i j)) b = vdot a (fun i => vdot (D i) b).
Proof.
intros. unfold vdot. unfold vmap2.
pose proof (vsum_vsum c r (fun i j => a.[i] * D.[i].[j] * b.[j])).
match goal with
| H: ?a1 = ?a2 |- ?b1 = ?b2 => replace b1 with a2; [replace b2 with a1|]; auto
end.
- apply vsum_eq; intros. rewrite vsum_cmul_l. apply vsum_eq; intros. ring.
- apply vsum_eq; intros. rewrite vsum_cmul_r. apply vsum_eq; intros. ring.
Qed.
End vdot_extra.
forall {r c} (a : @vec A c) (D : @vec (@vec A r) c) (b : @vec A r),
vdot (fun j => vdot a (fun i => D i j)) b = vdot a (fun i => vdot (D i) b).
Proof.
intros. unfold vdot. unfold vmap2.
pose proof (vsum_vsum c r (fun i j => a.[i] * D.[i].[j] * b.[j])).
match goal with
| H: ?a1 = ?a2 |- ?b1 = ?b2 => replace b1 with a2; [replace b2 with a1|]; auto
end.
- apply vsum_eq; intros. rewrite vsum_cmul_l. apply vsum_eq; intros. ring.
- apply vsum_eq; intros. rewrite vsum_cmul_r. apply vsum_eq; intros. ring.
Qed.
End vdot_extra.
Section vlen.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Context `{HA2R
: A2R A Aadd Azero Aopp Amul Aone Ainv Alt Ale a2r}.
Infix "+" := Aadd : A_scope.
Notation "0" := Azero : A_scope.
Infix "*" := Amul : A_scope.
Notation "1" := Aone : A_scope.
Notation "| a |" := (Aabs a) : A_scope.
Notation vzero := (@vzero _ Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Context `{HA2R
: A2R A Aadd Azero Aopp Amul Aone Ainv Alt Ale a2r}.
Infix "+" := Aadd : A_scope.
Notation "0" := Azero : A_scope.
Infix "*" := Amul : A_scope.
Notation "1" := Aone : A_scope.
Notation "| a |" := (Aabs a) : A_scope.
Notation vzero := (@vzero _ Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Length (magnitude) of a vector, is derived by inner-product
Definition vlen {n} (a : vec n) : R := R_sqrt.sqrt (a2r (<a, a>)).
Notation "|| a ||" := (vlen a) : vec_scope.
Notation "|| a ||" := (vlen a) : vec_scope.
||vzero|| = 0
Lemma vlen_vzero : forall {n:nat}, @vlen n vzero = 0%R.
Proof. intros. unfold vlen. rewrite vdot_0_l. rewrite a2r_0 at 1. ra. Qed.
Section OrderedARing.
Context `{HOrderedARing
: OrderedARing A Aadd Azero Aopp Amul Aone Alt Ale}.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Proof. intros. unfold vlen. rewrite vdot_0_l. rewrite a2r_0 at 1. ra. Qed.
Section OrderedARing.
Context `{HOrderedARing
: OrderedARing A Aadd Azero Aopp Amul Aone Alt Ale}.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
0 <= ||a||
||a|| = ||b|| <-> <a, a> = <b, b>
Lemma vlen_eq_iff_dot_eq : forall {n} (a b : vec n), ||a|| = ||b|| <-> <a, a> = <b, b>.
Proof.
intros. unfold vlen. split; intros H; try rewrite H; auto.
apply sqrt_inj in H.
rewrite a2r_eq_iff in H; auto.
apply a2r_ge0_iff; apply vdot_ge0.
apply a2r_ge0_iff; apply vdot_ge0.
Qed.
Proof.
intros. unfold vlen. split; intros H; try rewrite H; auto.
apply sqrt_inj in H.
rewrite a2r_eq_iff in H; auto.
apply a2r_ge0_iff; apply vdot_ge0.
apply a2r_ge0_iff; apply vdot_ge0.
Qed.
<a, a> = ||a||²
Lemma vdot_same : forall {n} (a : vec n), a2r (<a, a>) = (||a||²)%R.
Proof.
intros. unfold vlen. rewrite Rsqr_sqrt; auto.
apply a2r_ge0_iff. apply vdot_ge0.
Qed.
Proof.
intros. unfold vlen. rewrite Rsqr_sqrt; auto.
apply a2r_ge0_iff. apply vdot_ge0.
Qed.
|a i| <= ||a||
Lemma vnth_le_vlen : forall {n} (a : vec n) (i : 'I_n),
a <> vzero -> (a2r (|a i|%A) <= ||a||)%R.
Proof.
intros. apply Rsqr_incr_0_var.
- rewrite <- vdot_same. unfold Rsqr. rewrite <- a2r_mul. apply a2r_le_iff.
replace (|a i| * |a i|) with (a i * a i). apply vnth_sqr_le_vdot.
rewrite <- Aabs_mul. rewrite Aabs_right; auto. apply sqr_ge0.
- apply vlen_ge0.
Qed.
a <> vzero -> (a2r (|a i|%A) <= ||a||)%R.
Proof.
intros. apply Rsqr_incr_0_var.
- rewrite <- vdot_same. unfold Rsqr. rewrite <- a2r_mul. apply a2r_le_iff.
replace (|a i| * |a i|) with (a i * a i). apply vnth_sqr_le_vdot.
rewrite <- Aabs_mul. rewrite Aabs_right; auto. apply sqr_ge0.
- apply vlen_ge0.
Qed.
||a|| = 1 <-> <a, a> = 1
Lemma vlen_eq1_iff_vdot1 : forall {n} (a : vec n), ||a|| = 1%R <-> <a, a> = 1.
Proof.
intros. unfold vlen. rewrite sqrt_eq1_iff. rewrite a2r_eq1_iff. easy.
Qed.
Proof.
intros. unfold vlen. rewrite sqrt_eq1_iff. rewrite a2r_eq1_iff. easy.
Qed.
||- a|| = ||a||
Lemma vlen_vopp : forall n (a : vec n), ||- a|| = ||a||.
Proof.
intros. unfold vlen. f_equal. f_equal. rewrite vdot_vopp_l,vdot_vopp_r. ring.
Qed.
Proof.
intros. unfold vlen. f_equal. f_equal. rewrite vdot_vopp_l,vdot_vopp_r. ring.
Qed.
||x .* a|| = |x| * ||a||
Lemma vlen_vcmul : forall n x (a : vec n), ||x c* a|| = ((a2r (|x|))%A * ||a||)%R.
Proof.
intros. unfold vlen.
rewrite commutative.
replace (a2r (|x|)%A) with (|(a2r x)|)%R.
2:{ rewrite a2r_Aabs. auto. }
rewrite <- sqrt_sqr_abs. rewrite <- sqrt_mult_alt.
- f_equal. rewrite vdot_vcmul_l, vdot_vcmul_r, <- associative.
rewrite a2r_mul. rewrite commutative. f_equal. rewrite a2r_mul. auto.
- apply a2r_ge0_iff. apply vdot_ge0.
Qed.
Proof.
intros. unfold vlen.
rewrite commutative.
replace (a2r (|x|)%A) with (|(a2r x)|)%R.
2:{ rewrite a2r_Aabs. auto. }
rewrite <- sqrt_sqr_abs. rewrite <- sqrt_mult_alt.
- f_equal. rewrite vdot_vcmul_l, vdot_vcmul_r, <- associative.
rewrite a2r_mul. rewrite commutative. f_equal. rewrite a2r_mul. auto.
- apply a2r_ge0_iff. apply vdot_ge0.
Qed.
||a + b||² = ||a||² + ||a||² + 2 * <a, b>
Lemma vlen_sqr_vadd : forall {n} (a b : vec n),
||(a + b)||² = (||a||² + ||b||² + 2 * a2r (<a, b>))%R.
Proof.
intros. rewrite <- !vdot_same. rewrite !vdot_vadd_l, !vdot_vadd_r.
rewrite (vdot_comm b a). rewrite !a2r_add. ring.
Qed.
||(a + b)||² = (||a||² + ||b||² + 2 * a2r (<a, b>))%R.
Proof.
intros. rewrite <- !vdot_same. rewrite !vdot_vadd_l, !vdot_vadd_r.
rewrite (vdot_comm b a). rewrite !a2r_add. ring.
Qed.
||a - b||² = ||a||² + ||b||² - 2 * <a, b>
Lemma vlen_sqr_vsub : forall {n} (a b : vec n),
||(a - b)||² = (||a||² + ||b||² - 2 * a2r (<a, b>))%R.
Proof.
intros. rewrite <- !vdot_same.
rewrite !vdot_vadd_l, !vdot_vadd_r.
rewrite !vdot_vopp_l, !vdot_vopp_r. rewrite (vdot_comm b a).
rewrite !a2r_add, !a2r_opp at 1. ring.
Qed.
||(a - b)||² = (||a||² + ||b||² - 2 * a2r (<a, b>))%R.
Proof.
intros. rewrite <- !vdot_same.
rewrite !vdot_vadd_l, !vdot_vadd_r.
rewrite !vdot_vopp_l, !vdot_vopp_r. rewrite (vdot_comm b a).
rewrite !a2r_add, !a2r_opp at 1. ring.
Qed.
|<a, b>| <= ||a|| * ||b||
Lemma vdot_abs_le : forall {n} (a b : vec n), (|a2r (<a, b>)| <= ||a|| * ||b||)%R.
Proof.
intros. pose proof (vdot_sqr_le a b).
apply a2r_le_iff in H. rewrite !a2r_mul in H.
rewrite (vdot_same a) in H. rewrite (vdot_same b) in H.
replace (||a||² * ||b||²)%R with ((||a|| * ||b||)²) in H; [| cbv;ring].
apply Rsqr_le_abs_0 in H.
replace (|(||a|| * ||b||)|)%R with (||a|| * ||b||)%R in H; auto.
rewrite !Rabs_right; auto.
pose proof (vlen_ge0 a). pose proof (vlen_ge0 b). ra.
Qed.
Proof.
intros. pose proof (vdot_sqr_le a b).
apply a2r_le_iff in H. rewrite !a2r_mul in H.
rewrite (vdot_same a) in H. rewrite (vdot_same b) in H.
replace (||a||² * ||b||²)%R with ((||a|| * ||b||)²) in H; [| cbv;ring].
apply Rsqr_le_abs_0 in H.
replace (|(||a|| * ||b||)|)%R with (||a|| * ||b||)%R in H; auto.
rewrite !Rabs_right; auto.
pose proof (vlen_ge0 a). pose proof (vlen_ge0 b). ra.
Qed.
<a, b> <= ||a|| * ||b||
Lemma vdot_le_mul_vlen : forall {n} (a b : vec n), (a2r (<a, b>) <= ||a|| * ||b||)%R.
Proof. intros. pose proof (vdot_abs_le a b). apply Rabs_le_rev in H. ra. Qed.
Proof. intros. pose proof (vdot_abs_le a b). apply Rabs_le_rev in H. ra. Qed.
- ||a|| * ||b|| <= <a, b>
Lemma vdot_ge_mul_vlen_neg : forall {n} (a b : vec n),
(- (||a|| * ||b||) <= a2r (<a, b>))%R.
Proof. intros. pose proof (vdot_abs_le a b). apply Rabs_le_rev in H. ra. Qed.
(- (||a|| * ||b||) <= a2r (<a, b>))%R.
Proof. intros. pose proof (vdot_abs_le a b). apply Rabs_le_rev in H. ra. Qed.
||a + b|| <= ||a|| + ||a||
Lemma vlen_le_add : forall {n} (a b : vec n), (||(a + b)%V|| <= ||a|| + ||b||)%R.
Proof.
intros. apply Rsqr_incr_0_var.
2:{ unfold vlen; ra. }
rewrite Rsqr_plus. rewrite <- !vdot_same.
replace (a2r (<a + b, a + b>))
with (a2r (<a, a>) + a2r (<b, b>) + (2 * a2r (<a, b>)))%R.
2:{ rewrite vdot_vadd_l,!vdot_vadd_r.
rewrite (vdot_comm b a). rewrite !a2r_add at 1. ra. }
apply Rplus_le_compat_l.
rewrite !associative. apply Rmult_le_compat_l; ra.
pose proof (vdot_abs_le a b). unfold Rabs in H.
destruct Rcase_abs; ra.
Qed.
Proof.
intros. apply Rsqr_incr_0_var.
2:{ unfold vlen; ra. }
rewrite Rsqr_plus. rewrite <- !vdot_same.
replace (a2r (<a + b, a + b>))
with (a2r (<a, a>) + a2r (<b, b>) + (2 * a2r (<a, b>)))%R.
2:{ rewrite vdot_vadd_l,!vdot_vadd_r.
rewrite (vdot_comm b a). rewrite !a2r_add at 1. ra. }
apply Rplus_le_compat_l.
rewrite !associative. apply Rmult_le_compat_l; ra.
pose proof (vdot_abs_le a b). unfold Rabs in H.
destruct Rcase_abs; ra.
Qed.
||a|| - ||b|| <= ||a + b||
Lemma vlen_ge_sub : forall {n} (a b : vec n), ((||a|| - ||b||) <= ||(a + b)%V||)%R.
Proof.
intros. apply Rsqr_incr_0_var.
2:{ unfold vlen; ra. }
rewrite Rsqr_minus. rewrite <- !vdot_same.
replace (a2r (<a + b, a + b>))
with (a2r (<a, a>) + a2r (<b, b>) + (2 * a2r (<a, b>)))%R.
2:{ rewrite vdot_vadd_l,!vdot_vadd_r.
rewrite (vdot_comm b a). rewrite !a2r_add at 1. ra. }
apply Rplus_le_compat_l.
pose proof (vdot_abs_le a b). unfold Rabs in H.
destruct Rcase_abs; ra.
Qed.
End OrderedARing.
Section OrderedField_Dec.
Context `{HOrderedField
: OrderedField A Aadd Azero Aopp Amul Aone Ainv Alt Ale}.
Context {AeqDec : Dec (@eq A)}.
Infix "<=" := Ale : A_scope.
Proof.
intros. apply Rsqr_incr_0_var.
2:{ unfold vlen; ra. }
rewrite Rsqr_minus. rewrite <- !vdot_same.
replace (a2r (<a + b, a + b>))
with (a2r (<a, a>) + a2r (<b, b>) + (2 * a2r (<a, b>)))%R.
2:{ rewrite vdot_vadd_l,!vdot_vadd_r.
rewrite (vdot_comm b a). rewrite !a2r_add at 1. ra. }
apply Rplus_le_compat_l.
pose proof (vdot_abs_le a b). unfold Rabs in H.
destruct Rcase_abs; ra.
Qed.
End OrderedARing.
Section OrderedField_Dec.
Context `{HOrderedField
: OrderedField A Aadd Azero Aopp Amul Aone Ainv Alt Ale}.
Context {AeqDec : Dec (@eq A)}.
Infix "<=" := Ale : A_scope.
||a|| = 0 <-> v = 0
Lemma vlen_eq0_iff_eq0 : forall {n} (a : vec n), ||a|| = 0%R <-> a = vzero.
Proof.
intros. unfold vlen. split; intros.
- apply vdot_same_eq0_then_vzero. apply sqrt_eq_0 in H; auto.
apply a2r_eq0_iff; auto. apply a2r_ge0_iff; apply vdot_ge0.
- rewrite H. rewrite vdot_0_l. rewrite a2r_0 at 1. ra.
Qed.
Proof.
intros. unfold vlen. split; intros.
- apply vdot_same_eq0_then_vzero. apply sqrt_eq_0 in H; auto.
apply a2r_eq0_iff; auto. apply a2r_ge0_iff; apply vdot_ge0.
- rewrite H. rewrite vdot_0_l. rewrite a2r_0 at 1. ra.
Qed.
||a|| <> 0 <-> a <> 0
Lemma vlen_neq0_iff_neq0 : forall {n} (a : vec n), ||a|| <> 0%R <-> a <> vzero.
Proof. intros. rewrite vlen_eq0_iff_eq0. easy. Qed.
Proof. intros. rewrite vlen_eq0_iff_eq0. easy. Qed.
a <> vzero -> 0 < ||a||
Lemma vlen_gt0 : forall {n} (a : vec n), a <> vzero -> (0 < ||a||)%R.
Proof. intros. pose proof (vlen_ge0 a). apply vlen_neq0_iff_neq0 in H; ra. Qed.
Proof. intros. pose proof (vlen_ge0 a). apply vlen_neq0_iff_neq0 in H; ra. Qed.
0 <= <a, a>
Lemma vdot_same_ge0 : forall {n} (a : vec n), (Azero <= <a, a>)%A.
Proof.
intros. destruct (Aeqdec a vzero) as [H|H].
- subst. rewrite vdot_0_l. apply le_refl.
- apply le_if_lt. apply vdot_gt0; auto.
Qed.
End OrderedField_Dec.
End vlen.
#[export] Hint Resolve vlen_ge0 : vec.
Proof.
intros. destruct (Aeqdec a vzero) as [H|H].
- subst. rewrite vdot_0_l. apply le_refl.
- apply le_if_lt. apply vdot_gt0; auto.
Qed.
End OrderedField_Dec.
End vlen.
#[export] Hint Resolve vlen_ge0 : vec.
Section vunit.
Context `{HARing : ARing}.
Add Ring ring_inst : (make_ring_theory HARing).
Notation "1" := Aone.
Notation vzero := (vzero Azero).
Notation vopp := (@vopp _ Aopp).
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation "< a , b >" := (vdot a b) : vec_scope.
Context `{HARing : ARing}.
Add Ring ring_inst : (make_ring_theory HARing).
Notation "1" := Aone.
Notation vzero := (vzero Azero).
Notation vopp := (@vopp _ Aopp).
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation "< a , b >" := (vdot a b) : vec_scope.
A unit vector `a` is a vector whose length equals one.
Here, we use the square of length instead of length directly,
but this is reasonable with the proof of vunit_spec.
vunit a <-> vunit (vopp a).
Lemma vopp_vunit : forall {n} (a : vec n), vunit (vopp a) <-> vunit a.
Proof.
intros. unfold vunit. rewrite vdot_vopp_l, vdot_vopp_r.
rewrite group_opp_opp. easy.
Qed.
Section Field.
Context `{HField : Field A Aadd Azero Aopp Amul Aone Ainv}.
Proof.
intros. unfold vunit. rewrite vdot_vopp_l, vdot_vopp_r.
rewrite group_opp_opp. easy.
Qed.
Section Field.
Context `{HField : Field A Aadd Azero Aopp Amul Aone Ainv}.
The unit vector cannot be zero vector
Lemma vunit_neq0 : forall {n} (a : vec n), vunit a -> a <> vzero.
Proof.
intros. intro. rewrite H0 in H. unfold vunit in H.
rewrite vdot_0_l in H. apply field_1_neq_0. easy.
Qed.
End Field.
Section A2R.
Context `{HA2R : A2R A Aadd Azero Aopp Amul Aone Ainv Alt Ale}.
Notation vlen := (@vlen _ Aadd Azero Amul a2r).
Notation "|| a ||" := (vlen a) : vec_scope.
Proof.
intros. intro. rewrite H0 in H. unfold vunit in H.
rewrite vdot_0_l in H. apply field_1_neq_0. easy.
Qed.
End Field.
Section A2R.
Context `{HA2R : A2R A Aadd Azero Aopp Amul Aone Ainv Alt Ale}.
Notation vlen := (@vlen _ Aadd Azero Amul a2r).
Notation "|| a ||" := (vlen a) : vec_scope.
Verify the definition is reasonable
Lemma vunit_spec : forall {n} (a : vec n), vunit a <-> ||a|| = 1%R.
Proof. intros. split; intros; apply vlen_eq1_iff_vdot1; auto. Qed.
Proof. intros. split; intros; apply vlen_eq1_iff_vdot1; auto. Qed.
vunit a -> || a || = 1
Lemma vunit_imply_vlen_eq1 : forall {n} (a : vec n), vunit a -> ||a|| = 1%R.
Proof. intros. apply vunit_spec; auto. Qed.
Proof. intros. apply vunit_spec; auto. Qed.
vunit a -> || a || = 1
Lemma vlen_eq1_imply_vunit : forall {n} (a : vec n), ||a|| = 1%R -> vunit a.
Proof. intros. apply vunit_spec; auto. Qed.
Section OrderedARing.
Context `{HOrderedARing : OrderedARing A Aadd Azero Aopp Amul Aone Alt Ale}.
Proof. intros. apply vunit_spec; auto. Qed.
Section OrderedARing.
Context `{HOrderedARing : OrderedARing A Aadd Azero Aopp Amul Aone Alt Ale}.
vunit a -> <a, a> = 1
Lemma vunit_vdot : forall {n} (a : vec n), vunit a -> a2r (<a, a>) = 1%R.
Proof.
intros. rewrite vdot_same.
apply vunit_spec in H. rewrite H. ra.
Qed.
End OrderedARing.
End A2R.
Proof.
intros. rewrite vdot_same.
apply vunit_spec in H. rewrite H. ra.
Qed.
End OrderedARing.
End A2R.
If column of a and column of b all are unit,
then column of (a * b) is also unit
Section vorth.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Definition vorth {n} (a b : vec n) : Prop := <a, b> = Azero.
Infix "_|_" := vorth : vec_scope.
Context `{HARing : ARing A Aadd Azero Aopp Amul Aone}.
Add Ring ring_inst : (make_ring_theory HARing).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Definition vorth {n} (a b : vec n) : Prop := <a, b> = Azero.
Infix "_|_" := vorth : vec_scope.
a _| b -> b _| a
Lemma vorth_comm : forall {n} (a b : vec n), a _|_ b -> b _|_ a.
Proof. intros. unfold vorth in *. rewrite vdot_comm; auto. Qed.
Section Dec_Field.
Context {AeqDec : Dec (@eq A)}.
Context `{HField : Field A Aadd Azero Aopp Amul Aone Ainv}.
Proof. intros. unfold vorth in *. rewrite vdot_comm; auto. Qed.
Section Dec_Field.
Context {AeqDec : Dec (@eq A)}.
Context `{HField : Field A Aadd Azero Aopp Amul Aone Ainv}.
(x .* a) _| b <-> a _| b
Lemma vorth_vcmul_l : forall {n} x (a b : vec n),
x <> Azero -> ((x c* a) _|_ b <-> a _|_ b).
Proof.
intros. unfold vorth in *. rewrite vdot_vcmul_l. split; intros.
- apply field_mul_eq0_iff in H0. destruct H0; auto. easy.
- rewrite H0. ring.
Qed.
x <> Azero -> ((x c* a) _|_ b <-> a _|_ b).
Proof.
intros. unfold vorth in *. rewrite vdot_vcmul_l. split; intros.
- apply field_mul_eq0_iff in H0. destruct H0; auto. easy.
- rewrite H0. ring.
Qed.
a _| (x .* b) <-> a _| b
Lemma vorth_vcmul_r : forall {n} x (a b : vec n),
x <> Azero -> (a _|_ (x c* b) <-> a _|_ b).
Proof.
intros. split; intros.
- apply vorth_comm in H0. apply vorth_comm. apply vorth_vcmul_l in H0; auto.
- apply vorth_comm in H0. apply vorth_comm. apply vorth_vcmul_l; auto.
Qed.
End Dec_Field.
End vorth.
x <> Azero -> (a _|_ (x c* b) <-> a _|_ b).
Proof.
intros. split; intros.
- apply vorth_comm in H0. apply vorth_comm. apply vorth_vcmul_l in H0; auto.
- apply vorth_comm in H0. apply vorth_comm. apply vorth_vcmul_l; auto.
Qed.
End Dec_Field.
End vorth.
Section vproj.
Context `{F:Field A Aadd Azero Aopp Amul Aone Ainv}.
Add Field field_inst : (make_field_theory F).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation Adiv a b := (a * (/ b))%A.
Infix "/" := Adiv : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation vunit := (@vunit _ Aadd Azero Amul Aone).
Notation vorth := (@vorth _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Infix "_|_" := vorth : vec_scope.
Context `{F:Field A Aadd Azero Aopp Amul Aone Ainv}.
Add Field field_inst : (make_field_theory F).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation Adiv a b := (a * (/ b))%A.
Infix "/" := Adiv : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation vunit := (@vunit _ Aadd Azero Amul Aone).
Notation vorth := (@vorth _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Infix "_|_" := vorth : vec_scope.
The projection component of `a` onto `b`
a _| b -> vproj a b = vzero
Lemma vorth_imply_vproj_eq0 : forall {n} (a b : vec n), a _|_ b -> vproj a b = vzero.
Proof.
intros. unfold vorth in H. unfold vproj. rewrite H.
replace (Azero * / (<b, b>)) with Azero. apply vcmul_0_l.
rewrite ring_mul_0_l; auto.
Qed.
Proof.
intros. unfold vorth in H. unfold vproj. rewrite H.
replace (Azero * / (<b, b>)) with Azero. apply vcmul_0_l.
rewrite ring_mul_0_l; auto.
Qed.
vunit b -> vproj a b = <a, b> .* b
Lemma vproj_vunit : forall {n} (a b : vec n), vunit b -> vproj a b = <a, b> c* b.
Proof. intros. unfold vproj. f_equal. rewrite H. field. apply field_1_neq_0. Qed.
Section OrderedField.
Context `{HOrderedField : OrderedField A Aadd Azero Aopp Amul Aone Ainv}.
Proof. intros. unfold vproj. f_equal. rewrite H. field. apply field_1_neq_0. Qed.
Section OrderedField.
Context `{HOrderedField : OrderedField A Aadd Azero Aopp Amul Aone Ainv}.
vproj (a + b) c = vproj a c + vproj b c
Lemma vproj_vadd : forall {n} (a b c : vec n),
c <> vzero -> (vproj (a + b) c = vproj a c + vproj b c)%V.
Proof.
intros. unfold vproj. rewrite vdot_vadd_l. rewrite <- vcmul_add. f_equal.
field. apply vdot_same_neq0_if_vnonzero; auto.
Qed.
c <> vzero -> (vproj (a + b) c = vproj a c + vproj b c)%V.
Proof.
intros. unfold vproj. rewrite vdot_vadd_l. rewrite <- vcmul_add. f_equal.
field. apply vdot_same_neq0_if_vnonzero; auto.
Qed.
vproj (x .* a) b = x .* (vproj a b)
Lemma vproj_vcmul : forall {n} (a b : vec n) x,
b <> vzero -> (vproj (x c* a) b = x c* (vproj a b))%V.
Proof.
intros. unfold vproj. rewrite vdot_vcmul_l. rewrite vcmul_assoc. f_equal.
field. apply vdot_same_neq0_if_vnonzero; auto.
Qed.
b <> vzero -> (vproj (x c* a) b = x c* (vproj a b))%V.
Proof.
intros. unfold vproj. rewrite vdot_vcmul_l. rewrite vcmul_assoc. f_equal.
field. apply vdot_same_neq0_if_vnonzero; auto.
Qed.
vproj a a = a
Lemma vproj_same : forall {n} (a : vec n), a <> vzero -> vproj a a = a.
Proof.
intros. unfold vproj. replace (<a, a> / <a, a>) with Aone; try field.
apply vcmul_1_l. apply vdot_same_neq0_if_vnonzero; auto.
Qed.
End OrderedField.
End vproj.
Proof.
intros. unfold vproj. replace (<a, a> / <a, a>) with Aone; try field.
apply vcmul_1_l. apply vdot_same_neq0_if_vnonzero; auto.
Qed.
End OrderedField.
End vproj.
Section vperp.
Context `{F:Field A Aadd Azero Aopp Amul Aone Ainv}.
Add Field field_inst : (make_field_theory F).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation Adiv a b := (a * (/ b))%A.
Infix "/" := Adiv : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation vproj := (@vproj _ Aadd Azero Amul Ainv).
Notation vorth := (@vorth _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Infix "_|_" := vorth : vec_scope.
Context `{F:Field A Aadd Azero Aopp Amul Aone Ainv}.
Add Field field_inst : (make_field_theory F).
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation Adiv a b := (a * (/ b))%A.
Infix "/" := Adiv : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Notation vdot := (@vdot _ Aadd Azero Amul).
Notation vproj := (@vproj _ Aadd Azero Amul Ainv).
Notation vorth := (@vorth _ Aadd Azero Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Notation "< a , b >" := (vdot a b) : vec_scope.
Infix "_|_" := vorth : vec_scope.
The perpendicular component of `a` respect to `b`
vperp a b = a - vproj a b
vproj a b = a - vperp a b
Lemma vproj_eq_minus_vperp : forall {n} (a b : vec n), vproj a b = a - vperp a b.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
Qed.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
Qed.
(vproj a b) + (vperp a b) = a
Lemma vproj_plus_vperp : forall {n} (a b : vec n), vproj a b + vperp a b = a.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
Qed.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
Qed.
a _| b -> vperp a b = a
Lemma vorth_imply_vperp_eq_l : forall {n} (a b : vec n), a _|_ b -> vperp a b = a.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
rewrite vorth_imply_vproj_eq0; auto.
Qed.
Section OrderedField.
Context `{HOrderedField : OrderedField A Aadd Azero Aopp Amul Aone Ainv}.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
rewrite vorth_imply_vproj_eq0; auto.
Qed.
Section OrderedField.
Context `{HOrderedField : OrderedField A Aadd Azero Aopp Amul Aone Ainv}.
(vproj a b) _| (vperp a b)
Lemma vorth_vproj_vperp : forall {n} (a b : vec n),
b <> vzero -> vproj a b _|_ vperp a b.
Proof.
intros. unfold vorth, vperp, vproj.
rewrite !vdot_vcmul_l. rewrite vdot_vsub_r. rewrite !vdot_vcmul_r.
rewrite (vdot_comm b a). field_simplify. rewrite ring_mul_0_l; auto.
apply vdot_same_neq0_if_vnonzero; auto.
Qed.
b <> vzero -> vproj a b _|_ vperp a b.
Proof.
intros. unfold vorth, vperp, vproj.
rewrite !vdot_vcmul_l. rewrite vdot_vsub_r. rewrite !vdot_vcmul_r.
rewrite (vdot_comm b a). field_simplify. rewrite ring_mul_0_l; auto.
apply vdot_same_neq0_if_vnonzero; auto.
Qed.
vperp (a + b) c = vperp a c + vperp b c
Lemma vperp_vadd : forall {n} (a b c : vec n),
c <> vzero -> (vperp (a + b) c = vperp a c + vperp b c)%V.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
rewrite vproj_vadd; auto. agroup.
Qed.
c <> vzero -> (vperp (a + b) c = vperp a c + vperp b c)%V.
Proof.
intros. unfold vperp. pose proof (vadd_AGroup (A:=A) n). agroup.
rewrite vproj_vadd; auto. agroup.
Qed.
vperp (x .* a) b = x .* (vperp a b)
Lemma vperp_vcmul : forall {n} (x : A) (a b : vec n),
b <> vzero -> (vperp (x c* a) b = x c* (vperp a b))%V.
Proof.
intros. unfold vperp. rewrite vproj_vcmul; auto. rewrite vcmul_vsub. auto.
Qed.
b <> vzero -> (vperp (x c* a) b = x c* (vperp a b))%V.
Proof.
intros. unfold vperp. rewrite vproj_vcmul; auto. rewrite vcmul_vsub. auto.
Qed.
vperp a a = vzero
Lemma vperp_self : forall {n} (a : vec n), a <> vzero -> vperp a a = vzero.
Proof.
intros. unfold vperp. rewrite vproj_same; auto; auto. apply vsub_self.
Qed.
End OrderedField.
End vperp.
Proof.
intros. unfold vperp. rewrite vproj_same; auto; auto. apply vsub_self.
Qed.
End OrderedField.
End vperp.
Section vcoll_vpara_vantipara.
Context `{HOrderedField
: OrderedField A Aadd Azero Aopp Amul Aone Ainv Alt Ale}.
Add Field field_inst : (make_field_theory HOrderedField).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Infix "+" := Aadd : A_scope.
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation Asub a b := (a + (- b))%A.
Infix "-" := Asub : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation Adiv a b := (a * (/ b))%A.
Infix "/" := Adiv : A_scope.
Notation vzero := (vzero Azero).
Notation vadd := (@vadd _ Aadd).
Notation vopp := (@vopp _ Aopp).
Notation vcmul := (@vcmul _ Amul).
Infix "+" := vadd : vec_scope.
Notation "- a" := (vopp a) : vec_scope.
Notation "a - b" := ((a + -b)%V) : vec_scope.
Infix "c*" := vcmul : vec_scope.
Two non-zero vectors are collinear, if the components are proportional
Definition vcoll {n} (a b : vec n) : Prop :=
a <> vzero /\ b <> vzero /\ exists x : A, x <> 0 /\ x c* a = b.
Infix "//" := vcoll : vec_scope.
a <> vzero /\ b <> vzero /\ exists x : A, x <> 0 /\ x c* a = b.
Infix "//" := vcoll : vec_scope.
a // a
Lemma vcoll_refl : forall {n} (a : vec n), a <> vzero -> a // a.
Proof.
intros. hnf. repeat split; auto. exists 1. split.
apply field_1_neq_0. apply vcmul_1_l.
Qed.
Proof.
intros. hnf. repeat split; auto. exists 1. split.
apply field_1_neq_0. apply vcmul_1_l.
Qed.
a // b -> b // a
Lemma vcoll_sym : forall {n} (a b : vec n), a // b -> b // a.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists (/x). split; auto.
apply field_inv_neq0_iff; auto.
rewrite <- H14. rewrite vcmul_assoc. rewrite field_mulInvL; auto.
apply vcmul_1_l.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists (/x). split; auto.
apply field_inv_neq0_iff; auto.
rewrite <- H14. rewrite vcmul_assoc. rewrite field_mulInvL; auto.
apply vcmul_1_l.
Qed.
a // b -> b // c -> a // c
Lemma vcoll_trans : forall {n} (a b c : vec n), a // b -> b // c -> a // c.
Proof.
intros. hnf in *.
destruct H as [H11 [H12 [x1 [H13 H14]]]].
destruct H0 as [H21 [H22 [x2 [H23 H24]]]].
repeat split; auto. exists (x2 * x1).
split. apply field_mul_neq0_iff; auto.
rewrite <- H24, <- H14. rewrite vcmul_assoc. auto.
Qed.
Proof.
intros. hnf in *.
destruct H as [H11 [H12 [x1 [H13 H14]]]].
destruct H0 as [H21 [H22 [x2 [H23 H24]]]].
repeat split; auto. exists (x2 * x1).
split. apply field_mul_neq0_iff; auto.
rewrite <- H24, <- H14. rewrite vcmul_assoc. auto.
Qed.
a // b => ∃! x, x <> 0 /\ x .* a = b
Lemma vcoll_imply_uniqueX : forall {n} (a b : vec n),
a // b -> (exists ! x, x <> 0 /\ x c* a = b).
Proof.
intros. destruct H as [H1 [H2 [x [H3 H4]]]]. exists x. split; auto.
intros j [H5 H6]. rewrite <- H4 in H6.
apply vcmul_sameV_imply_eqX in H6; auto.
Qed.
a // b -> (exists ! x, x <> 0 /\ x c* a = b).
Proof.
intros. destruct H as [H1 [H2 [x [H3 H4]]]]. exists x. split; auto.
intros j [H5 H6]. rewrite <- H4 in H6.
apply vcmul_sameV_imply_eqX in H6; auto.
Qed.
a // b -> (x .* a) // b
Lemma vcoll_vcmul_l : forall {n} x (a b : vec n),
x <> 0 -> a // b -> x c* a // b.
Proof.
intros. hnf in *. destruct H0 as [H1 [H2 [x1 [H3 H4]]]].
repeat split; auto.
- intro. apply vcmul_eq0_imply_x0_or_v0 in H0. destruct H0; auto.
- exists (x1/x); simpl. split.
apply field_mul_neq0_iff. split; auto. apply field_inv_neq0_iff; auto.
rewrite <- H4. rewrite vcmul_assoc. f_equal. field. auto.
Qed.
x <> 0 -> a // b -> x c* a // b.
Proof.
intros. hnf in *. destruct H0 as [H1 [H2 [x1 [H3 H4]]]].
repeat split; auto.
- intro. apply vcmul_eq0_imply_x0_or_v0 in H0. destruct H0; auto.
- exists (x1/x); simpl. split.
apply field_mul_neq0_iff. split; auto. apply field_inv_neq0_iff; auto.
rewrite <- H4. rewrite vcmul_assoc. f_equal. field. auto.
Qed.
a // b -> a // (x c* b)
Lemma vcoll_vcmul_r : forall {n} x (a b : vec n),
x <> 0 -> a // b -> a // (x c* b).
Proof.
intros. apply vcoll_sym in H0. apply vcoll_sym. apply vcoll_vcmul_l; auto.
Qed.
End vcoll.
x <> 0 -> a // b -> a // (x c* b).
Proof.
intros. apply vcoll_sym in H0. apply vcoll_sym. apply vcoll_vcmul_l; auto.
Qed.
End vcoll.
Two non-zero vectors are parallel, if positive proportional
Definition vpara {n} (a b : vec n) : Prop :=
a <> vzero /\ b <> vzero /\ exists x : A, 0 < x /\ x c* a = b.
Infix "//+" := vpara : vec_scope.
a <> vzero /\ b <> vzero /\ exists x : A, 0 < x /\ x c* a = b.
Infix "//+" := vpara : vec_scope.
a //+ a
Lemma vpara_refl : forall {n} (a : vec n), a <> vzero -> a //+ a.
Proof.
intros. hnf. repeat split; auto. exists 1. split. apply lt_0_1. apply vcmul_1_l.
Qed.
Proof.
intros. hnf. repeat split; auto. exists 1. split. apply lt_0_1. apply vcmul_1_l.
Qed.
a //+ b -> b //+ a
Lemma vpara_sym : forall {n} (a b : vec n), a //+ b -> b //+ a.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists (/x). split; auto. apply inv_gt0; auto.
rewrite <- H14. rewrite vcmul_assoc. rewrite field_mulInvL; auto.
apply vcmul_1_l. symmetry. apply lt_not_eq; auto.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists (/x). split; auto. apply inv_gt0; auto.
rewrite <- H14. rewrite vcmul_assoc. rewrite field_mulInvL; auto.
apply vcmul_1_l. symmetry. apply lt_not_eq; auto.
Qed.
a //+ b -> b //+ c -> a //+ c
Lemma vpara_trans : forall {n} (a b c: vec n), a //+ b -> b //+ c -> a //+ c.
Proof.
intros. hnf in *.
destruct H as [H11 [H12 [x1 [H13 H14]]]].
destruct H0 as [H21 [H22 [x2 [H23 H24]]]].
repeat split; auto. exists (x2 * x1). split. apply mul_gt0_if_gt0_gt0; auto.
rewrite <- H24, <- H14. rewrite vcmul_assoc. auto.
Qed.
Proof.
intros. hnf in *.
destruct H as [H11 [H12 [x1 [H13 H14]]]].
destruct H0 as [H21 [H22 [x2 [H23 H24]]]].
repeat split; auto. exists (x2 * x1). split. apply mul_gt0_if_gt0_gt0; auto.
rewrite <- H24, <- H14. rewrite vcmul_assoc. auto.
Qed.
a //+ b => ∃! x, 0 < x /\ x .* a = b
Lemma vpara_imply_uniqueX : forall {n} (a b : vec n),
a //+ b -> (exists ! x, 0 < x /\ x c* a = b).
Proof.
intros. destruct H as [H1 [H2 [x [H3 H4]]]]. exists x. split; auto.
intros j [H5 H6]. rewrite <- H4 in H6.
apply vcmul_sameV_imply_eqX in H6; auto.
Qed.
a //+ b -> (exists ! x, 0 < x /\ x c* a = b).
Proof.
intros. destruct H as [H1 [H2 [x [H3 H4]]]]. exists x. split; auto.
intros j [H5 H6]. rewrite <- H4 in H6.
apply vcmul_sameV_imply_eqX in H6; auto.
Qed.
a //+ b -> (x c* a) //+ b
Lemma vpara_vcmul_l : forall {n} x (a b : vec n),
0 < x -> a //+ b -> x c* a //+ b.
Proof.
intros. hnf in *. destruct H0 as [H1 [H2 [x1 [H3 H4]]]].
repeat split; auto.
- intro. apply vcmul_eq0_imply_x0_or_v0 in H0. destruct H0; auto.
apply lt_not_eq in H. rewrite H0 in H. easy.
- exists (x1/x); simpl. split.
+ apply mul_gt0_if_gt0_gt0; auto. apply inv_gt0; auto.
+ rewrite <- H4. rewrite vcmul_assoc. f_equal. field.
symmetry. apply lt_not_eq. auto.
Qed.
0 < x -> a //+ b -> x c* a //+ b.
Proof.
intros. hnf in *. destruct H0 as [H1 [H2 [x1 [H3 H4]]]].
repeat split; auto.
- intro. apply vcmul_eq0_imply_x0_or_v0 in H0. destruct H0; auto.
apply lt_not_eq in H. rewrite H0 in H. easy.
- exists (x1/x); simpl. split.
+ apply mul_gt0_if_gt0_gt0; auto. apply inv_gt0; auto.
+ rewrite <- H4. rewrite vcmul_assoc. f_equal. field.
symmetry. apply lt_not_eq. auto.
Qed.
a //+ b -> a //+ (x c* b)
Lemma vpara_vcmul_r : forall {n} x (a b : vec n),
0 < x -> a //+ b -> a //+ (x c* b).
Proof.
intros. apply vpara_sym in H0. apply vpara_sym. apply vpara_vcmul_l; auto.
Qed.
End vpara.
0 < x -> a //+ b -> a //+ (x c* b).
Proof.
intros. apply vpara_sym in H0. apply vpara_sym. apply vpara_vcmul_l; auto.
Qed.
End vpara.
Two non-zero vectors are antiparallel, if negative proportional
Definition vantipara {n} (a b : vec n) : Prop :=
a <> vzero /\ b <> vzero /\ exists x : A, x < 0 /\ x c* a = b.
Infix "//-" := vantipara : vec_scope.
a <> vzero /\ b <> vzero /\ exists x : A, x < 0 /\ x c* a = b.
Infix "//-" := vantipara : vec_scope.
a //- a
Lemma vantipara_refl : forall {n} (a : vec n), a <> vzero -> a //- a.
Proof.
intros. hnf. repeat split; auto. exists (-(1))%A. split.
apply gt0_iff_neg. apply lt_0_1.
Abort.
Proof.
intros. hnf. repeat split; auto. exists (-(1))%A. split.
apply gt0_iff_neg. apply lt_0_1.
Abort.
a //- b -> b //- a
Lemma vantipara_sym : forall {n} (a b : vec n), a //- b -> b //- a.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists (/x). split; auto.
apply inv_lt0; auto.
rewrite <- H14. rewrite vcmul_assoc. rewrite field_mulInvL; auto.
apply vcmul_1_l. apply lt_not_eq; auto.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists (/x). split; auto.
apply inv_lt0; auto.
rewrite <- H14. rewrite vcmul_assoc. rewrite field_mulInvL; auto.
apply vcmul_1_l. apply lt_not_eq; auto.
Qed.
a //- b -> b //- c -> a //- c
Lemma vantipara_trans : forall {n} (a b c: vec n), a //- b -> b //- c -> a //- c.
Proof.
intros. hnf in *.
destruct H as [H11 [H12 [x1 [H13 H14]]]].
destruct H0 as [H21 [H22 [x2 [H23 H24]]]].
repeat split; auto. exists (x2 * x1). split.
2:{ rewrite <- H24, <- H14. rewrite vcmul_assoc. auto. }
Abort.
Proof.
intros. hnf in *.
destruct H as [H11 [H12 [x1 [H13 H14]]]].
destruct H0 as [H21 [H22 [x2 [H23 H24]]]].
repeat split; auto. exists (x2 * x1). split.
2:{ rewrite <- H24, <- H14. rewrite vcmul_assoc. auto. }
Abort.
a //- b => ∃! x, x < 0 /\ x .* a = b
Lemma vantipara_imply_uniqueX : forall {n} (a b : vec n),
a //- b -> (exists ! x, x < 0 /\ x c* a = b).
Proof.
intros. destruct H as [H1 [H2 [x [H3 H4]]]]. exists x. split; auto.
intros j [H5 H6]. rewrite <- H4 in H6.
apply vcmul_sameV_imply_eqX in H6; auto.
Qed.
a //- b -> (exists ! x, x < 0 /\ x c* a = b).
Proof.
intros. destruct H as [H1 [H2 [x [H3 H4]]]]. exists x. split; auto.
intros j [H5 H6]. rewrite <- H4 in H6.
apply vcmul_sameV_imply_eqX in H6; auto.
Qed.
a //- b -> (x .* a) //- b
Lemma vantipara_vcmul_l : forall {n} x (a b : vec n),
0 < x -> a //- b -> x c* a //- b.
Proof.
intros. hnf in *. destruct H0 as [H1 [H2 [x1 [H3 H4]]]].
repeat split; auto.
- intro. apply vcmul_eq0_imply_x0_or_v0 in H0. destruct H0; auto.
apply lt_not_eq in H. rewrite H0 in H. easy.
- exists (x1/x); simpl. split.
+ apply mul_lt0_if_lt0_gt0; auto. apply inv_gt0; auto.
+ rewrite <- H4. rewrite vcmul_assoc. f_equal. field.
symmetry. apply lt_not_eq. auto.
Qed.
0 < x -> a //- b -> x c* a //- b.
Proof.
intros. hnf in *. destruct H0 as [H1 [H2 [x1 [H3 H4]]]].
repeat split; auto.
- intro. apply vcmul_eq0_imply_x0_or_v0 in H0. destruct H0; auto.
apply lt_not_eq in H. rewrite H0 in H. easy.
- exists (x1/x); simpl. split.
+ apply mul_lt0_if_lt0_gt0; auto. apply inv_gt0; auto.
+ rewrite <- H4. rewrite vcmul_assoc. f_equal. field.
symmetry. apply lt_not_eq. auto.
Qed.
a //- b -> a //- (x .* b)
Lemma vantipara_vcmul_r : forall {n} x (a b : vec n),
0 < x -> a //- b -> a //- (x c* b).
Proof.
intros. apply vantipara_sym in H0. apply vantipara_sym.
apply vantipara_vcmul_l; auto.
Qed.
End vantipara.
Infix "//" := vcoll : vec_scope.
Infix "//+" := vpara : vec_scope.
Infix "//-" := vantipara : vec_scope.
0 < x -> a //- b -> a //- (x c* b).
Proof.
intros. apply vantipara_sym in H0. apply vantipara_sym.
apply vantipara_vcmul_l; auto.
Qed.
End vantipara.
Infix "//" := vcoll : vec_scope.
Infix "//+" := vpara : vec_scope.
Infix "//-" := vantipara : vec_scope.
a //+ b -> a // b
Lemma vpara_imply_vcoll : forall {n} (a b : vec n), a //+ b -> a // b.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists x. split; auto. symmetry. apply lt_imply_neq; auto.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists x. split; auto. symmetry. apply lt_imply_neq; auto.
Qed.
a //- b -> a // b
Lemma vantipara_imply_vcoll : forall {n} (a b : vec n), a //- b -> a // b.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists x. split; auto. apply lt_imply_neq; auto.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. exists x. split; auto. apply lt_imply_neq; auto.
Qed.
a //+ b -> (-a) //- b
Lemma vpara_imply_vantipara_opp_l : forall {n} (a b : vec n), a //+ b -> (-a) //- b.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. apply group_opp_neq0_iff; auto.
exists (- x)%A. split. apply gt0_iff_neg; auto.
rewrite vcmul_opp, vcmul_vopp, <- H14. rewrite vopp_vopp. auto.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. apply group_opp_neq0_iff; auto.
exists (- x)%A. split. apply gt0_iff_neg; auto.
rewrite vcmul_opp, vcmul_vopp, <- H14. rewrite vopp_vopp. auto.
Qed.
a //+ b -> a //- (-b)
Lemma vpara_imply_vantipara_opp_r : forall {n} (a b : vec n), a //+ b -> a //- (-b).
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. apply group_opp_neq0_iff; auto.
exists (- x)%A. split. apply gt0_iff_neg; auto.
rewrite vcmul_opp. rewrite H14. auto.
Qed.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
repeat split; auto. apply group_opp_neq0_iff; auto.
exists (- x)%A. split. apply gt0_iff_neg; auto.
rewrite vcmul_opp. rewrite H14. auto.
Qed.
a // b -> (a //+ b) \/ (a //- b)
Lemma vpara_imply_vpara_or_vantipara : forall {n} (a b : vec n),
a // b -> a //+ b \/ a //- b.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
destruct (lt_cases x 0) as [[Hlt|Hgt]|Heq0].
- right. hnf. repeat split; auto. exists x; auto.
- left. hnf. repeat split; auto. exists x; auto.
- easy.
Qed.
End convert.
End vcoll_vpara_vantipara.
a // b -> a //+ b \/ a //- b.
Proof.
intros. hnf in *. destruct H as [H11 [H12 [x [H13 H14]]]].
destruct (lt_cases x 0) as [[Hlt|Hgt]|Heq0].
- right. hnf. repeat split; auto. exists x; auto.
- left. hnf. repeat split; auto. exists x; auto.
- easy.
Qed.
End convert.
End vcoll_vpara_vantipara.