FinMatrix.Matrix.MatrixInvGE
Require Import NatExt.
Require Import Hierarchy.
Require Import MyExtrOCamlR.
Require Export Matrix MatrixGauss MatrixInvBase.
Require QcExt RExt.
Generalizable Variable A Aadd Azero Aopp Amul Aone Ainv.
Section minv.
Context `{HField : Field} {AeqDec : Dec (@eq A)}.
Add Field field_thy_inst : (make_field_theory HField).
Open Scope A_scope.
Open Scope mat_scope.
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Infix "+" := Aadd : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation "a - b" := ((a + -b)%A) : A_scope.
Infix "*" := Amul : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation "a / b" := ((a * /b)%A) : A_scope.
Notation smat n := (smat A n).
Notation mat1 := (@mat1 _ Azero Aone).
Notation mcmul := (@mcmul _ Amul).
Infix "c*" := mcmul : mat_scope.
Notation mmul := (@mmul _ Aadd Azero Amul).
Infix "*" := mmul : mat_scope.
Infix "*" := mmul : mat_scope.
Notation mmulv := (@mmulv _ Aadd 0 Amul).
Infix "*v" := mmulv : mat_scope.
Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
Notation msingular := (@msingular _ Aadd 0 Amul 1).
Notation toREF := (@toREF _ Aadd 0 Aopp Amul Ainv _).
Notation toRREF := (@toRREF _ Aadd 0 Aopp Amul _).
Notation rowOps2mat := (@rowOps2mat _ Aadd 0 Amul 1).
Notation rowOps2matInv := (@rowOps2matInv _ Aadd 0 Aopp Amul 1 Ainv).
Context `{HField : Field} {AeqDec : Dec (@eq A)}.
Add Field field_thy_inst : (make_field_theory HField).
Open Scope A_scope.
Open Scope mat_scope.
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Infix "+" := Aadd : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Notation "a - b" := ((a + -b)%A) : A_scope.
Infix "*" := Amul : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Notation "a / b" := ((a * /b)%A) : A_scope.
Notation smat n := (smat A n).
Notation mat1 := (@mat1 _ Azero Aone).
Notation mcmul := (@mcmul _ Amul).
Infix "c*" := mcmul : mat_scope.
Notation mmul := (@mmul _ Aadd Azero Amul).
Infix "*" := mmul : mat_scope.
Infix "*" := mmul : mat_scope.
Notation mmulv := (@mmulv _ Aadd 0 Amul).
Infix "*v" := mmulv : mat_scope.
Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
Notation msingular := (@msingular _ Aadd 0 Amul 1).
Notation toREF := (@toREF _ Aadd 0 Aopp Amul Ainv _).
Notation toRREF := (@toRREF _ Aadd 0 Aopp Amul _).
Notation rowOps2mat := (@rowOps2mat _ Aadd 0 Amul 1).
Notation rowOps2matInv := (@rowOps2matInv _ Aadd 0 Aopp Amul 1 Ainv).
Definition minvtbleb {n} : smat n -> bool :=
match n with
| O => fun _ => true
| S n' =>
fun M =>
match toREF M (S n') with
| None => false
| Some (l1, M1) => true
end
end.
Lemma mmul_eq1_imply_toREF_Some_l : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, M1), toREF M (S n) = Some (l1, M1)).
Proof.
Admitted.
Lemma mmul_eq1_imply_toREF_Some_r : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, N1), toREF N (S n) = Some (l1, N1)).
Proof.
Admitted.
match n with
| O => fun _ => true
| S n' =>
fun M =>
match toREF M (S n') with
| None => false
| Some (l1, M1) => true
end
end.
Lemma mmul_eq1_imply_toREF_Some_l : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, M1), toREF M (S n) = Some (l1, M1)).
Proof.
Admitted.
Lemma mmul_eq1_imply_toREF_Some_r : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, N1), toREF N (S n) = Some (l1, N1)).
Proof.
Admitted.
minvtble M <-> minvtbleb M = true
Lemma minvtble_iff_minvtbleb_true : forall {n} (M : smat n),
minvtble M <-> minvtbleb M = true.
Proof.
intros. split; intros.
- hnf in H. destruct H as [M' [Hl Hr]]. destruct n; auto.
apply (mmul_eq1_imply_toREF_Some_r) in Hl. destruct Hl as [[l1 M1]].
unfold minvtbleb. rewrite H. auto.
- apply minvtble_iff_minvtbleL. hnf.
unfold minvtbleb in H. destruct n.
+ exists M. apply v0eq.
+ destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct (toRREF M1 (S n)) as [l2 M2] eqn:T2.
apply toRREF_eq in T2 as H3.
apply toREF_eq in T1 as H4.
apply toRREF_mat1 in T2 as H5.
* subst. rewrite <- mmul_assoc in H5.
exists (rowOps2mat l2 * rowOps2mat l1); auto.
* apply toREF_mUnitUpperTrig in T1. auto.
Qed.
minvtble M <-> minvtbleb M = true.
Proof.
intros. split; intros.
- hnf in H. destruct H as [M' [Hl Hr]]. destruct n; auto.
apply (mmul_eq1_imply_toREF_Some_r) in Hl. destruct Hl as [[l1 M1]].
unfold minvtbleb. rewrite H. auto.
- apply minvtble_iff_minvtbleL. hnf.
unfold minvtbleb in H. destruct n.
+ exists M. apply v0eq.
+ destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct (toRREF M1 (S n)) as [l2 M2] eqn:T2.
apply toRREF_eq in T2 as H3.
apply toREF_eq in T1 as H4.
apply toRREF_mat1 in T2 as H5.
* subst. rewrite <- mmul_assoc in H5.
exists (rowOps2mat l2 * rowOps2mat l1); auto.
* apply toREF_mUnitUpperTrig in T1. auto.
Qed.
msingular M <-> minvtbleb M = false
Lemma msingular_iff_minvtbleb_false : forall {n} (M : smat n),
msingular M <-> minvtbleb M = false.
Proof.
intros. unfold msingular. rewrite minvtble_iff_minvtbleb_true.
rewrite not_true_iff_false. tauto.
Qed.
msingular M <-> minvtbleb M = false.
Proof.
intros. unfold msingular. rewrite minvtble_iff_minvtbleb_true.
rewrite not_true_iff_false. tauto.
Qed.
Definition minvo {n} : smat n -> option (smat n) :=
match n with
| O => fun M => Some mat1
| S n' =>
fun (M : smat (S n')) =>
match toREF M (S n') with
| None => None
| Some (l1, M1) =>
let (l2, M2) := toRREF M1 (S n') in
Some (rowOps2mat (l2 ++ l1))
end
end.
match n with
| O => fun M => Some mat1
| S n' =>
fun (M : smat (S n')) =>
match toREF M (S n') with
| None => None
| Some (l1, M1) =>
let (l2, M2) := toRREF M1 (S n') in
Some (rowOps2mat (l2 ++ l1))
end
end.
`minvo` return `Some`, iff M is invertible
Lemma minvo_Some_iff_minvtble : forall {n} (M : smat n),
(exists M', minvo M = Some M') <-> minvtble M.
Proof.
intros. rewrite minvtble_iff_minvtbleb_true.
unfold minvo, minvtbleb. destruct n.
- split; intros; auto. exists M. f_equal. apply v0eq.
- split; intros.
+ destruct H as [M' H]. destruct toREF as [[l1 M1]|]; try easy.
+ destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2. eexists; auto.
Qed.
(exists M', minvo M = Some M') <-> minvtble M.
Proof.
intros. rewrite minvtble_iff_minvtbleb_true.
unfold minvo, minvtbleb. destruct n.
- split; intros; auto. exists M. f_equal. apply v0eq.
- split; intros.
+ destruct H as [M' H]. destruct toREF as [[l1 M1]|]; try easy.
+ destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2. eexists; auto.
Qed.
`minvo` return `None`, iff M is singular
Lemma minvo_None_iff_msingular : forall {n} (M : smat n),
minvo M = None <-> msingular M.
Proof.
intros. unfold msingular. rewrite <- minvo_Some_iff_minvtble.
unfold minvo. destruct n.
- split; intros; try easy. destruct H. exists mat1; auto.
- split; intros; try easy.
+ intro. destruct H0 as [M' H0]. rewrite H in H0. easy.
+ destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2. destruct H. eexists; auto.
Qed.
minvo M = None <-> msingular M.
Proof.
intros. unfold msingular. rewrite <- minvo_Some_iff_minvtble.
unfold minvo. destruct n.
- split; intros; try easy. destruct H. exists mat1; auto.
- split; intros; try easy.
+ intro. destruct H0 as [M' H0]. rewrite H in H0. easy.
+ destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2. destruct H. eexists; auto.
Qed.
If `minvo M` return `Some M'`, then `M' * M = mat1`
Lemma minvo_Some_imply_eq1_l : forall {n} (M M' : smat n),
minvo M = Some M' -> M' * M = mat1.
Proof.
intros. unfold minvo in H. destruct n.
- apply v0eq.
- destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2. inv H.
copy T1. copy T2.
apply toREF_eq in T1.
apply toRREF_eq in T2.
rewrite rowOps2mat_app. rewrite mmul_assoc. rewrite T1,T2.
apply toRREF_mat1 in HC0; auto.
apply toREF_mUnitUpperTrig in HC; auto.
Qed.
minvo M = Some M' -> M' * M = mat1.
Proof.
intros. unfold minvo in H. destruct n.
- apply v0eq.
- destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2. inv H.
copy T1. copy T2.
apply toREF_eq in T1.
apply toRREF_eq in T2.
rewrite rowOps2mat_app. rewrite mmul_assoc. rewrite T1,T2.
apply toRREF_mat1 in HC0; auto.
apply toREF_mUnitUpperTrig in HC; auto.
Qed.
If `minvo M` return `Some M'`, then `M * M' = mat1`
Lemma minvo_Some_imply_eq1_r : forall {n} (M M' : smat n),
minvo M = Some M' -> M * M' = mat1.
Proof.
intros.
unfold minvo in H. destruct n.
- apply v0eq.
- destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2.
apply toREF_eq_inv in T1 as T1'.
apply toRREF_eq_inv in T2 as T2'.
apply toRREF_mat1 in T2 as T2''; auto.
2:{ apply toREF_mUnitUpperTrig in T1; auto. }
rewrite <- T1'. rewrite <- T2'. rewrite T2''.
inversion H. rewrite mmul_1_r.
rewrite <- rowOps2matInv_app.
rewrite mmul_rowOps2matInv_rowOps2mat_eq1. auto.
apply Forall_app. split.
apply toRREF_rowOpValid in T2; auto.
apply toREF_rowOpValid in T1; auto.
Qed.
minvo M = Some M' -> M * M' = mat1.
Proof.
intros.
unfold minvo in H. destruct n.
- apply v0eq.
- destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2.
apply toREF_eq_inv in T1 as T1'.
apply toRREF_eq_inv in T2 as T2'.
apply toRREF_mat1 in T2 as T2''; auto.
2:{ apply toREF_mUnitUpperTrig in T1; auto. }
rewrite <- T1'. rewrite <- T2'. rewrite T2''.
inversion H. rewrite mmul_1_r.
rewrite <- rowOps2matInv_app.
rewrite mmul_rowOps2matInv_rowOps2mat_eq1. auto.
apply Forall_app. split.
apply toRREF_rowOpValid in T2; auto.
apply toREF_rowOpValid in T1; auto.
Qed.
Definition minv {n} : smat n -> smat n :=
match n with
| O => fun _ => mat1
| S n' =>
fun (M : smat (S n')) =>
match toREF M n with
| None => mat1
| Some (l1, M1) =>
let (l2, M2) := toRREF M1 n in
rowOps2mat (l2 ++ l1)
end
end.
Notation "M \-1" := (minv M) : mat_scope.
match n with
| O => fun _ => mat1
| S n' =>
fun (M : smat (S n')) =>
match toREF M n with
| None => mat1
| Some (l1, M1) =>
let (l2, M2) := toRREF M1 n in
rowOps2mat (l2 ++ l1)
end
end.
Notation "M \-1" := (minv M) : mat_scope.
If `minvo M` return `Some N`, then `M\-1` equal to `N`
Lemma minvo_Some_imply_minv : forall {n} (M N : smat n), minvo M = Some N -> M\-1 = N.
Proof.
intros. unfold minvo, minv in *. destruct n. inv H. auto.
destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2] eqn:T2.
inv H. auto.
Qed.
Proof.
intros. unfold minvo, minv in *. destruct n. inv H. auto.
destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2] eqn:T2.
inv H. auto.
Qed.
If `minvo M` return `None`, then `M\-1` equal to `mat1`
Lemma minvo_None_imply_minv : forall {n} (M : smat n), minvo M = None -> M\-1 = mat1.
Proof.
intros. unfold minvo, minv in *. destruct n. easy.
destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2] eqn:T2. easy.
Qed.
Proof.
intros. unfold minvo, minv in *. destruct n. easy.
destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2] eqn:T2. easy.
Qed.
M\-1 * M = mat1
Lemma mmul_minv_l : forall {n} (M : smat n), minvtble M -> M\-1 * M = mat1.
Proof.
intros. apply minvtble_iff_minvtbleb_true in H as H1.
unfold minvtbleb, minv in *. destruct n. apply v0eq.
destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2.
rewrite rowOps2mat_app. rewrite mmul_assoc.
apply toREF_eq in T1 as T1'. rewrite T1'.
apply toRREF_eq in T2 as T2'. rewrite T2'.
apply toRREF_mat1 in T2; auto.
apply toREF_mUnitUpperTrig in T1; auto.
Qed.
End minv.
Proof.
intros. apply minvtble_iff_minvtbleb_true in H as H1.
unfold minvtbleb, minv in *. destruct n. apply v0eq.
destruct toREF as [[l1 M1]|] eqn:T1; try easy.
destruct toRREF as [l2 M2] eqn:T2.
rewrite rowOps2mat_app. rewrite mmul_assoc.
apply toREF_eq in T1 as T1'. rewrite T1'.
apply toRREF_eq in T2 as T2'. rewrite T2'.
apply toRREF_mat1 in T2; auto.
apply toREF_mUnitUpperTrig in T1; auto.
Qed.
End minv.
Module MinvCoreGE (E : FieldElementType) <: MinvCore E.
Import E.
Open Scope A_scope.
Open Scope mat_scope.
Add Field field_inst : (make_field_theory Field).
Local Notation "0" := Azero : A_scope.
Local Notation "1" := Aone : A_scope.
Local Infix "+" := Aadd : A_scope.
Local Notation "- a" := (Aopp a) : A_scope.
Local Notation "a - b" := ((a + -b)%A) : A_scope.
Local Infix "*" := Amul : A_scope.
Local Notation "/ a" := (Ainv a) : A_scope.
Local Notation "a / b" := ((a * /b)%A) : A_scope.
Local Notation smat n := (smat A n).
Local Notation mat1 := (@mat1 _ Azero Aone).
Local Notation mcmul := (@mcmul _ Amul).
Local Infix "c*" := mcmul : mat_scope.
Local Notation mmul := (@mmul _ Aadd Azero Amul).
Local Infix "*" := mmul : mat_scope.
Local Infix "*" := mmul : mat_scope.
Local Notation mmulv := (@mmulv _ Aadd 0 Amul).
Local Infix "*v" := mmulv : mat_scope.
Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
Notation msingular := (@msingular _ Aadd 0 Amul 1).
Notation toREF := (@toREF _ Aadd 0 Aopp Amul Ainv _).
Notation toRREF := (@toRREF _ Aadd 0 Aopp Amul _).
Notation rowOps2mat := (@rowOps2mat _ Aadd 0 Amul 1).
Notation rowOps2matInv := (@rowOps2matInv _ Aadd 0 Aopp Amul 1 Ainv).
Import E.
Open Scope A_scope.
Open Scope mat_scope.
Add Field field_inst : (make_field_theory Field).
Local Notation "0" := Azero : A_scope.
Local Notation "1" := Aone : A_scope.
Local Infix "+" := Aadd : A_scope.
Local Notation "- a" := (Aopp a) : A_scope.
Local Notation "a - b" := ((a + -b)%A) : A_scope.
Local Infix "*" := Amul : A_scope.
Local Notation "/ a" := (Ainv a) : A_scope.
Local Notation "a / b" := ((a * /b)%A) : A_scope.
Local Notation smat n := (smat A n).
Local Notation mat1 := (@mat1 _ Azero Aone).
Local Notation mcmul := (@mcmul _ Amul).
Local Infix "c*" := mcmul : mat_scope.
Local Notation mmul := (@mmul _ Aadd Azero Amul).
Local Infix "*" := mmul : mat_scope.
Local Infix "*" := mmul : mat_scope.
Local Notation mmulv := (@mmulv _ Aadd 0 Amul).
Local Infix "*v" := mmulv : mat_scope.
Notation minvtble := (@minvtble _ Aadd 0 Amul 1).
Notation msingular := (@msingular _ Aadd 0 Amul 1).
Notation toREF := (@toREF _ Aadd 0 Aopp Amul Ainv _).
Notation toRREF := (@toRREF _ Aadd 0 Aopp Amul _).
Notation rowOps2mat := (@rowOps2mat _ Aadd 0 Amul 1).
Notation rowOps2matInv := (@rowOps2matInv _ Aadd 0 Aopp Amul 1 Ainv).
Definition minvtbleb {n} (M : smat n) : bool :=
@minvtbleb _ Aadd 0 Aopp Amul Ainv _ _ M.
Lemma mmul_eq1_imply_toREF_Some_l : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, M1), toREF M (S n) = Some (l1, M1)).
Proof. intros. apply mmul_eq1_imply_toREF_Some_l in H; auto. Qed.
Lemma mmul_eq1_imply_toREF_Some_r : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, N1), toREF N (S n) = Some (l1, N1)).
Proof. intros. apply mmul_eq1_imply_toREF_Some_r in H; auto. Qed.
@minvtbleb _ Aadd 0 Aopp Amul Ainv _ _ M.
Lemma mmul_eq1_imply_toREF_Some_l : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, M1), toREF M (S n) = Some (l1, M1)).
Proof. intros. apply mmul_eq1_imply_toREF_Some_l in H; auto. Qed.
Lemma mmul_eq1_imply_toREF_Some_r : forall {n} (M N : smat (S n)),
M * N = mat1 -> (exists '(l1, N1), toREF N (S n) = Some (l1, N1)).
Proof. intros. apply mmul_eq1_imply_toREF_Some_r in H; auto. Qed.
minvtble M <-> minvtbleb M = true
Lemma minvtble_iff_minvtbleb_true : forall {n} (M : smat n),
minvtble M <-> minvtbleb M = true.
Proof. intros. apply minvtble_iff_minvtbleb_true. Qed.
minvtble M <-> minvtbleb M = true.
Proof. intros. apply minvtble_iff_minvtbleb_true. Qed.
msingular M <-> minvtbleb M = false
Lemma msingular_iff_minvtbleb_false : forall {n} (M : smat n),
msingular M <-> minvtbleb M = false.
Proof. intros. apply msingular_iff_minvtbleb_false. Qed.
msingular M <-> minvtbleb M = false.
Proof. intros. apply msingular_iff_minvtbleb_false. Qed.
`minvo` return `Some`, iff M is invertible
Lemma minvo_Some_iff_minvtble : forall {n} (M : smat n),
(exists M', minvo M = Some M') <-> minvtble M.
Proof. intros. apply minvo_Some_iff_minvtble. Qed.
(exists M', minvo M = Some M') <-> minvtble M.
Proof. intros. apply minvo_Some_iff_minvtble. Qed.
`minvo` return `None`, iff M is singular
Lemma minvo_None_iff_msingular : forall {n} (M : smat n),
minvo M = None <-> msingular M.
Proof. intros. apply minvo_None_iff_msingular. Qed.
minvo M = None <-> msingular M.
Proof. intros. apply minvo_None_iff_msingular. Qed.
If `minvo M` return `Some M'`, then `M' * M = mat1`
Lemma minvo_Some_imply_eq1_l : forall {n} (M M' : smat n),
minvo M = Some M' -> M' * M = mat1.
Proof. intros. apply minvo_Some_imply_eq1_l; auto. Qed.
minvo M = Some M' -> M' * M = mat1.
Proof. intros. apply minvo_Some_imply_eq1_l; auto. Qed.
If `minvo M` return `Some M'`, then `M * M' = mat1`
Lemma minvo_Some_imply_eq1_r : forall {n} (M M' : smat n),
minvo M = Some M' -> M * M' = mat1.
Proof. intros. apply minvo_Some_imply_eq1_r; auto. Qed.
minvo M = Some M' -> M * M' = mat1.
Proof. intros. apply minvo_Some_imply_eq1_r; auto. Qed.
Definition minv {n} (M : smat n) : smat n :=
@minv _ Aadd 0 Aopp Amul 1 Ainv _ _ M.
Notation "M \-1" := (minv M) : mat_scope.
@minv _ Aadd 0 Aopp Amul 1 Ainv _ _ M.
Notation "M \-1" := (minv M) : mat_scope.
If `minvo M` return `Some N`, then `M\-1` equal to `N`
Lemma minvo_Some_imply_minv : forall {n} (M N : smat n), minvo M = Some N -> M\-1 = N.
Proof. intros. apply minvo_Some_imply_minv; auto. Qed.
Proof. intros. apply minvo_Some_imply_minv; auto. Qed.
If `minvo M` return `None`, then `M\-1` equal to `mat1`
Lemma minvo_None_imply_minv : forall {n} (M : smat n), minvo M = None -> M\-1 = mat1.
Proof. intros. apply minvo_None_imply_minv; auto. Qed.
Proof. intros. apply minvo_None_imply_minv; auto. Qed.
M\-1 * M = mat1
Lemma mmul_minv_l : forall {n} (M : smat n), minvtble M -> M\-1 * M = mat1.
Proof. intros. apply mmul_minv_l; auto. Qed.
End MinvCoreGE.
Proof. intros. apply mmul_minv_l; auto. Qed.
End MinvCoreGE.
Module MinvGE (E : FieldElementType).
Module MinvCore_inst := MinvCoreGE E.
Module Minv_inst := Minv E MinvCore_inst.
Export Minv_inst.
End MinvGE.
Module MinvCore_inst := MinvCoreGE E.
Module Minv_inst := Minv E MinvCore_inst.
Export Minv_inst.
End MinvGE.