FinMatrix.CoqExt.Ratan2
Require Import RExt.
Open Scope R_scope.
Axiom cos_2PI_add : forall x : R, cos (2 * PI + x) = cos x.
Axiom tan_sub_PI : forall x : R, tan (x - PI) = tan x.
Definition atan2 (y x : R) : R :=
if x >? 0
then atan (y/x)
else
if x <? 0
then
if y >=? 0
then atan (y/x) + PI
else atan (y/x) - PI
else
if y >=? 0
then PI / 2
else - PI / 2
.
if x >? 0
then atan (y/x)
else
if x <? 0
then
if y >=? 0
then atan (y/x) + PI
else atan (y/x) - PI
else
if y >=? 0
then PI / 2
else - PI / 2
.
Automaticaly destruct `dec`
Ltac destruct_dec :=
repeat
match goal with
| |- context [dec ?cmp _ _] => destruct (dec cmp)
end.
Fact atan2_Xgt0 : forall y x, x > 0 -> atan2 y x = atan (y/x).
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_Xlt0_Yge0 : forall y x, x < 0 -> y >= 0 -> atan2 y x = (atan (y/x) + PI)%R.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_Xlt0_Ylt0 : forall y x, x < 0 -> y < 0 -> atan2 y x = (atan (y/x) - PI)%R.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_X0_Yge0 : forall y x, x = 0 -> y >= 0 -> atan2 y x = PI/2.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_X0_Ylt0 : forall y x, x = 0 -> y < 0 -> atan2 y x = - PI/2.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
repeat
match goal with
| |- context [dec ?cmp _ _] => destruct (dec cmp)
end.
Fact atan2_Xgt0 : forall y x, x > 0 -> atan2 y x = atan (y/x).
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_Xlt0_Yge0 : forall y x, x < 0 -> y >= 0 -> atan2 y x = (atan (y/x) + PI)%R.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_Xlt0_Ylt0 : forall y x, x < 0 -> y < 0 -> atan2 y x = (atan (y/x) - PI)%R.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_X0_Yge0 : forall y x, x = 0 -> y >= 0 -> atan2 y x = PI/2.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
Fact atan2_X0_Ylt0 : forall y x, x = 0 -> y < 0 -> atan2 y x = - PI/2.
Proof. intros. unfold atan2,Rltb,Rleb,Acmpb. destruct_dec; lra. Qed.
- PI < atan2 y x <= PI
Lemma atan2_bound : forall y x, - PI < atan2 y x <= PI.
Proof.
intros. pose proof (atan_bound (y/x)).
bdestruct (x >? 0).
- rewrite atan2_Xgt0; ra.
- bdestruct (x <? 0).
+ bdestruct (y >=? 0).
* rewrite atan2_Xlt0_Yge0; ra.
assert (y/x <= 0); ra. pose proof (atan_bound_le0 (y/x)); ra.
* rewrite atan2_Xlt0_Ylt0; ra.
assert (y < 0); ra. assert (0 < y/x); ra.
pose proof (atan_bound_gt0 (y/x)); ra.
+ assert (x = 0); ra. bdestruct (0 <=? y).
* rewrite atan2_X0_Yge0; ra.
* rewrite atan2_X0_Ylt0; ra.
Qed.
Proof.
intros. pose proof (atan_bound (y/x)).
bdestruct (x >? 0).
- rewrite atan2_Xgt0; ra.
- bdestruct (x <? 0).
+ bdestruct (y >=? 0).
* rewrite atan2_Xlt0_Yge0; ra.
assert (y/x <= 0); ra. pose proof (atan_bound_le0 (y/x)); ra.
* rewrite atan2_Xlt0_Ylt0; ra.
assert (y < 0); ra. assert (0 < y/x); ra.
pose proof (atan_bound_gt0 (y/x)); ra.
+ assert (x = 0); ra. bdestruct (0 <=? y).
* rewrite atan2_X0_Yge0; ra.
* rewrite atan2_X0_Ylt0; ra.
Qed.
An equation about atan2 will be used in the later proof
Lemma atan2_sin_cos_eq1 : forall a k : R,
- PI < a <= PI -> k > 0 ->
atan2 (sin a * k) (cos a * k) = a.
Proof.
intros. apply Rsplit_neg_pi_to_pi in H.
repeat match goal with | H: _ \/ _ |- _ => destruct H as [? | H] end;
subst; autorewrite with R.
- rewrite atan2_X0_Ylt0; ra.
- rewrite atan2_Xgt0; ra. replace (0/k) with 0; ra. apply atan_0.
- rewrite atan2_X0_Yge0; ra.
- assert (sin a < 0). { apply sin_lt_0_var; lra. }
assert (cos a < 0).
{ rewrite <- cos_2PI_add. apply cos_lt_0; ra. }
rewrite atan2_Xlt0_Ylt0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw.
rewrite <- Rtrigo_facts.tan_pi_plus; ra. rewrite atan_tan; ra.
- assert (sin a < 0). { apply sin_lt_0_var; lra. }
assert (0 < cos a). { apply cos_gt_0; ra. }
rewrite atan2_Xgt0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw. rewrite atan_tan; ra.
- assert (0 < sin a). { apply sin_gt_0; lra. }
assert (0 < cos a). { apply cos_gt_0; ra. }
rewrite atan2_Xgt0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw. rewrite atan_tan; ra.
- assert (0 <= sin a). { apply sin_ge_0; lra. }
assert (cos a < 0). { apply cos_lt_0; ra. }
rewrite atan2_Xlt0_Yge0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw.
rewrite <- tan_sub_PI. rewrite atan_tan; ra.
Qed.
- PI < a <= PI -> k > 0 ->
atan2 (sin a * k) (cos a * k) = a.
Proof.
intros. apply Rsplit_neg_pi_to_pi in H.
repeat match goal with | H: _ \/ _ |- _ => destruct H as [? | H] end;
subst; autorewrite with R.
- rewrite atan2_X0_Ylt0; ra.
- rewrite atan2_Xgt0; ra. replace (0/k) with 0; ra. apply atan_0.
- rewrite atan2_X0_Yge0; ra.
- assert (sin a < 0). { apply sin_lt_0_var; lra. }
assert (cos a < 0).
{ rewrite <- cos_2PI_add. apply cos_lt_0; ra. }
rewrite atan2_Xlt0_Ylt0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw.
rewrite <- Rtrigo_facts.tan_pi_plus; ra. rewrite atan_tan; ra.
- assert (sin a < 0). { apply sin_lt_0_var; lra. }
assert (0 < cos a). { apply cos_gt_0; ra. }
rewrite atan2_Xgt0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw. rewrite atan_tan; ra.
- assert (0 < sin a). { apply sin_gt_0; lra. }
assert (0 < cos a). { apply cos_gt_0; ra. }
rewrite atan2_Xgt0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw. rewrite atan_tan; ra.
- assert (0 <= sin a). { apply sin_ge_0; lra. }
assert (cos a < 0). { apply cos_lt_0; ra. }
rewrite atan2_Xlt0_Yge0; ra.
rewrite atan_ak_bk; ra. cbv; rewrite Rtan_rw.
rewrite <- tan_sub_PI. rewrite atan_tan; ra.
Qed.
2D向量的夹角从几何上看有两种做法,是否等价?
1. 使用 /_ a b = atan2 <a,b> (aXb),其值域是 (-π, π]
2. tan2 by bx - atan2 ay ax
问:方法1和方法2等价吗?有几步关键性的引理如下。
该问题已经被证明,见
https://en.wikipedia.org/wiki/Atan2Angle sum and difference identity
其证明需要借助复平面的幅角 Arg,这里暂未进行形式化。
Lemma atan2_plus_eq : forall x1 y1 x2 y2 : R,
atan2 y1 x1 + atan2 y2 x2 = atan2 (y1*x2+y2*x1) (x1*x2-y1*y2).
Admitted.
Lemma atan2_minus_eq : forall x1 y1 x2 y2 : R,
atan2 y1 x1 - atan2 y2 x2 = atan2 (y1*x2-y2*x1) (x1*x2+y1*y2).
Admitted.
atan2 y1 x1 + atan2 y2 x2 = atan2 (y1*x2+y2*x1) (x1*x2-y1*y2).
Admitted.
Lemma atan2_minus_eq : forall x1 y1 x2 y2 : R,
atan2 y1 x1 - atan2 y2 x2 = atan2 (y1*x2-y2*x1) (x1*x2+y1*y2).
Admitted.
0 < x -> y <> 0 -> atan2 (- y) x = - atan2 y x
Lemma atan2_y_neg : forall x y : R,
0 < x -> y <> 0 -> atan2 (- y) x = - atan2 y x.
Proof.
intros. unfold atan2. rewrite Rdiv_opp_l. rewrite atan_opp.
bdestruct (0 <? x); auto. bdestruct (x <? 0); ra.
Qed.
0 < x -> y <> 0 -> atan2 (- y) x = - atan2 y x.
Proof.
intros. unfold atan2. rewrite Rdiv_opp_l. rewrite atan_opp.
bdestruct (0 <? x); auto. bdestruct (x <? 0); ra.
Qed.
Don't unfold it, avoding too many details