FinMatrix.Matrix.Permutation
Require Import Extraction.
Require Export ListExt NatExt.
Generalizable Variable A Aadd Azero Aopp Amul Aone Ainv.
Lemma in_concat_length : forall {A} (d : dlist A) n,
(forall l, In l d -> length l = n) -> length (concat d) = n * length d.
Proof.
induction d; intros; simpl in *; auto.
rewrite app_length. rewrite IHd with (n:=n); auto. rewrite H; auto. lia.
Qed.
(forall l, In l d -> length l = n) -> length (concat d) = n * length d.
Proof.
induction d; intros; simpl in *; auto.
rewrite app_length. rewrite IHd with (n:=n); auto. rewrite H; auto. lia.
Qed.
(S n <? S m) = (n <? m)
Lemma nat_S_ltb_S : forall n m : nat, ((S n <? S m) = (n <? m))%nat.
Proof. intros. bdestruct (n <? m)%nat; bdestruct (S n <? S m)%nat; auto; lia. Qed.
Proof. intros. bdestruct (n <? m)%nat; bdestruct (S n <? S m)%nat; auto; lia. Qed.
lswap (a :: l) (S i) (S j) = a :: (lswap l i j)
Lemma lswap_cons_S_S : forall {A Azero} (l : list A) (a : A) (i j : nat),
i < length l -> j < length l ->
lswap Azero (a :: l) (S i) (S j) = a :: (lswap Azero l i j).
Proof.
intros. unfold lswap. simpl. rewrite !nat_S_ltb_S.
bdestruct (length l >? i); bdestruct (length l >? j); auto.
Qed.
i < length l -> j < length l ->
lswap Azero (a :: l) (S i) (S j) = a :: (lswap Azero l i j).
Proof.
intros. unfold lswap. simpl. rewrite !nat_S_ltb_S.
bdestruct (length l >? i); bdestruct (length l >? j); auto.
Qed.
lswap (a :: l) 0 (S j) = nth j l :: lset l j a.
Lemma lswap_cons_0_S : forall {A Azero} (l : list A) (a : A) (j : nat),
j < length l ->
lswap Azero (a :: l) 0 (S j) = nth j l Azero :: lset l j a.
Proof.
intros. unfold lswap. simpl.
rewrite nat_S_ltb_S. bdestruct (length l >? j); try easy.
Qed.
j < length l ->
lswap Azero (a :: l) 0 (S j) = nth j l Azero :: lset l j a.
Proof.
intros. unfold lswap. simpl.
rewrite nat_S_ltb_S. bdestruct (length l >? j); try easy.
Qed.
fold_left f l (a1 + a2) = (fold_left f l a1) + a2)
Lemma fold_left_rebase :
forall {A B} (f : A -> B -> A) (fa : A -> A -> A) (l : list B) (a1 a2 : A),
(forall a1 a2 b, f (fa a1 a2) b = fa (f a1 b) a2) ->
fold_left f l (fa a1 a2) = fa (fold_left f l a1) a2.
Proof.
intros. revert a1 a2.
induction l; intros; simpl in *; auto.
rewrite <- IHl. f_equal. auto.
Qed.
forall {A B} (f : A -> B -> A) (fa : A -> A -> A) (l : list B) (a1 a2 : A),
(forall a1 a2 b, f (fa a1 a2) b = fa (f a1 b) a2) ->
fold_left f l (fa a1 a2) = fa (fold_left f l a1) a2.
Proof.
intros. revert a1 a2.
induction l; intros; simpl in *; auto.
rewrite <- IHl. f_equal. auto.
Qed.
Get k-th element and remaining elements from a list
Fixpoint pick (l : list A) (k : nat) : A * list A :=
match k with
| 0 => (hd Azero l, tl l)
| S k' =>
match l with
| [] => (Azero, [])
| x :: l' =>
let (a,l0) := pick l' k' in
(a, ([x] ++ l0)%list)
end
end.
match k with
| 0 => (hd Azero l, tl l)
| S k' =>
match l with
| [] => (Azero, [])
| x :: l' =>
let (a,l0) := pick l' k' in
(a, ([x] ++ l0)%list)
end
end.
Get permutation of a list from its top n elements
Fixpoint permAux (n : nat) (l : list A) : list (list A) :=
match n with
| 0 => [[]]
| S n' =>
concat
(map
(fun k =>
let '(x, lx) := k in
map (cons x) (permAux n' lx))
(map (fun i => pick l i) (seq 0 n)))
end.
match n with
| 0 => [[]]
| S n' =>
concat
(map
(fun k =>
let '(x, lx) := k in
map (cons x) (permAux n' lx))
(map (fun i => pick l i) (seq 0 n)))
end.
Get permutation of a list
Convert a list to list of (one element * remaining elements)
Fixpoint pick {A} (l : list A) (remaining : list A) : list (A * list A) :=
match l with
| [] => []
| hl :: tl =>
(hl, remaining ++ tl) :: (pick tl (remaining ++ [hl]))
end.
match l with
| [] => []
| hl :: tl =>
(hl, remaining ++ tl) :: (pick tl (remaining ++ [hl]))
end.
Get permutation of a list from its top n elements
Fixpoint permAux {A} (n : nat) (l : list A) : list (list A) :=
match n with
| 0 => [[]]
| S n' =>
concat
(map
(fun k =>
let '(x, lx) := k in
map (cons x) (permAux n' lx))
(pick l []))
end.
match n with
| 0 => [[]]
| S n' =>
concat
(map
(fun k =>
let '(x, lx) := k in
map (cons x) (permAux n' lx))
(pick l []))
end.
Get permutation of a list
Insert an element `a` into a list `l` at all possible position
Fixpoint perm1 (a : A) (l : list A) : list (list A) :=
match l with
| [] => [[a]]
| hl :: tl => (a :: l) :: (map (cons hl) (perm1 a tl))
end.
match l with
| [] => [[a]]
| hl :: tl => (a :: l) :: (map (cons hl) (perm1 a tl))
end.
Permutation of a list
Fixpoint perm (l : list A) : list (list A) :=
match l with
| [] => [[]]
| hl :: tl => concat (map (perm1 hl) (perm tl))
end.
End def.
Section props.
Context {A : Type}.
Context {AeqDec : Dec (@eq A)}.
match l with
| [] => [[]]
| hl :: tl => concat (map (perm1 hl) (perm tl))
end.
End def.
Section props.
Context {A : Type}.
Context {AeqDec : Dec (@eq A)}.
|perm1 (a::l)| = S |l|
Lemma perm1_length : forall a (l : list A), length (perm1 a l) = S (length l).
Proof. induction l; simpl; auto. rewrite map_length. auto. Qed.
Proof. induction l; simpl; auto. rewrite map_length. auto. Qed.
perm1 a l <> ☐
Lemma perm1_not_nil : forall a (l : list A), perm1 a l <> [].
Proof. induction l; simpl; try easy. Qed.
Proof. induction l; simpl; try easy. Qed.
perm l <> ☐
Lemma perm_not_nil : forall (l : list A), perm l <> [].
Proof.
induction l; simpl; try easy.
destruct (perm l) eqn:E; simpl; try easy.
destruct (perm1 a l0) eqn:E1; try easy.
apply perm1_not_nil in E1; auto.
Qed.
Proof.
induction l; simpl; try easy.
destruct (perm l) eqn:E; simpl; try easy.
destruct (perm1 a l0) eqn:E1; try easy.
apply perm1_not_nil in E1; auto.
Qed.
hd (perm l) = l
Lemma hd_perm : forall (l : list A), hd [] (perm l) = l.
Proof.
induction l; auto. simpl.
destruct (perm l) as [|l0 dl] eqn:H1.
- apply perm_not_nil in H1. easy.
- simpl in *. subst. destruct l; simpl in *; auto.
Qed.
Proof.
induction l; auto. simpl.
destruct (perm l) as [|l0 dl] eqn:H1.
- apply perm_not_nil in H1. easy.
- simpl in *. subst. destruct l; simpl in *; auto.
Qed.
x \in (perm1 a l) -> length x = S (length l)
Lemma in_perm1_length : forall (l : list A) (a : A) (x : list A),
In x (perm1 a l) -> length x = S (length l).
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst; auto.
- destruct H; subst; auto.
apply in_map_iff in H. destruct H as [x0 [H H1]]. subst.
apply IHl in H1. simpl. auto.
Qed.
In x (perm1 a l) -> length x = S (length l).
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst; auto.
- destruct H; subst; auto.
apply in_map_iff in H. destruct H as [x0 [H H1]]. subst.
apply IHl in H1. simpl. auto.
Qed.
x \in (perm l) -> length x = length l
Lemma in_perm_length : forall (l x : list A),
In x (perm l) -> length x = length l.
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst. auto.
- apply in_concat in H. destruct H as [dl [H1 H2]].
apply in_map_iff in H1. destruct H1 as [l0 [H3 H4]].
subst. apply IHl in H4. rewrite <- H4.
apply in_perm1_length in H2; auto.
Qed.
In x (perm l) -> length x = length l.
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst. auto.
- apply in_concat in H. destruct H as [dl [H1 H2]].
apply in_map_iff in H1. destruct H1 as [l0 [H3 H4]].
subst. apply IHl in H4. rewrite <- H4.
apply in_perm1_length in H2; auto.
Qed.
|perm (a::l)| = |(a::l)| * |perm l|
Lemma perm_cons_length : forall (l : list A) (a : A),
length (perm (a :: l)) = (S (length l)) * (length (perm l)).
Proof.
destruct l; intros; auto.
unfold perm; fold (perm (a :: l)).
rewrite in_concat_length with (n:=S (length (a::l))).
- rewrite map_length. auto.
- intros. remember (a :: l) as d.
apply in_map_iff in H. destruct H as [x [H H1]].
apply in_perm_length in H1. rewrite <- H. rewrite perm1_length. auto.
Qed.
length (perm (a :: l)) = (S (length l)) * (length (perm l)).
Proof.
destruct l; intros; auto.
unfold perm; fold (perm (a :: l)).
rewrite in_concat_length with (n:=S (length (a::l))).
- rewrite map_length. auto.
- intros. remember (a :: l) as d.
apply in_map_iff in H. destruct H as [x [H H1]].
apply in_perm_length in H1. rewrite <- H. rewrite perm1_length. auto.
Qed.
|perm l| = |l|!
Lemma length_perm : forall (l : list A), length (perm l) = fact (length l).
Proof.
induction l. auto.
rewrite perm_cons_length.
simpl. rewrite IHl. auto.
Qed.
Proof.
induction l. auto.
rewrite perm_cons_length.
simpl. rewrite IHl. auto.
Qed.
In l0 (perm1 a l) -> (forall x, In x l0 -> x = a \/ In x l)
Lemma in_perm1 : forall (l : list A) (a : A) (l0 : list A),
In l0 (perm1 a l) -> (forall x, In x l0 -> x = a \/ In x l).
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst; simpl in *. destruct H0; auto.
- destruct H; subst; simpl in *.
+ destruct H0; auto.
+ apply in_map_iff in H. destruct H as [l1 [H1 H2]]. subst. simpl in *.
destruct H0; auto. apply IHl with (x:=x) in H2; auto. tauto.
Qed.
In l0 (perm1 a l) -> (forall x, In x l0 -> x = a \/ In x l).
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst; simpl in *. destruct H0; auto.
- destruct H; subst; simpl in *.
+ destruct H0; auto.
+ apply in_map_iff in H. destruct H as [l1 [H1 H2]]. subst. simpl in *.
destruct H0; auto. apply IHl with (x:=x) in H2; auto. tauto.
Qed.
In l0 (perm l) -> (forall x, In x l0 -> In x l)
Lemma in_perm : forall (l : list A) (l0 : list A),
In l0 (perm l) -> (forall x, In x l0 -> In x l).
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst; auto.
- destruct (Aeqdec a x); auto. right.
apply in_concat in H. destruct H as [d [H H1]].
apply in_map_iff in H. destruct H as [l1 [H2 H3]].
rewrite <- H2 in H1.
apply IHl with (l0:=l1); auto.
apply in_perm1 with (x:=x) in H1; auto. destruct H1; auto.
subst; easy.
Qed.
End props.
Section wf_perm.
Context {A : Type}.
Context {AeqDec : Dec (@eq A)}.
Definition wf_perm (l : list A) : Prop := NoDup l.
End wf_perm.
Section perm_index.
Open Scope nat_scope.
Notation perm := (@perm nat).
In l0 (perm l) -> (forall x, In x l0 -> In x l).
Proof.
induction l; intros; simpl in *.
- destruct H; try easy. subst; auto.
- destruct (Aeqdec a x); auto. right.
apply in_concat in H. destruct H as [d [H H1]].
apply in_map_iff in H. destruct H as [l1 [H2 H3]].
rewrite <- H2 in H1.
apply IHl with (l0:=l1); auto.
apply in_perm1 with (x:=x) in H1; auto. destruct H1; auto.
subst; easy.
Qed.
End props.
Section wf_perm.
Context {A : Type}.
Context {AeqDec : Dec (@eq A)}.
Definition wf_perm (l : list A) : Prop := NoDup l.
End wf_perm.
Section perm_index.
Open Scope nat_scope.
Notation perm := (@perm nat).
In a (perm (seq 0 n)) -> i < n -> nth i a < n
Lemma perm_index_lt : forall n i a, In a (perm (seq 0 n)) -> i < n -> nth i a 0 < n.
Proof.
intros. apply in_perm with (x:=nth i a 0) in H.
- apply in_seq in H. lia.
- apply nth_In. apply in_perm_length in H. rewrite seq_length in H. lia.
Qed.
End perm_index.
End method3.
Proof.
intros. apply in_perm with (x:=nth i a 0) in H.
- apply in_seq in H. lia.
- apply nth_In. apply in_perm_length in H. rewrite seq_length in H. lia.
Qed.
End perm_index.
End method3.
The RON of one element respect to a list
Definition ronum1 (a : A) (l : list A) : nat :=
fold_left (fun (n : nat) (b : A) => n + (if b <? a then 1 else 0)) l 0.
fold_left (fun (n : nat) (b : A) => n + (if b <? a then 1 else 0)) l 0.
The RON of a list
Fixpoint ronum (l : list A) : nat :=
match l with
| [] => 0
| x :: l' => ronum1 x l' + ronum l'
end.
Context {Azero : A}.
Notation lswap := (lswap Azero).
match l with
| [] => 0
| x :: l' => ronum1 x l' + ronum l'
end.
Context {Azero : A}.
Notation lswap := (lswap Azero).
ronum1 b (a :: l) = (if b <? a then 1 else 0) + ronum1 b l
Lemma ronum1_cons : forall (l : list A) a b,
ronum1 b (a :: l) = (if a <? b then 1 else 0) + ronum1 b l.
Proof.
intros. unfold ronum1. simpl.
remember (fun (n : nat) (b0 : A) => n + (if b0 <? b then 1 else 0)) as f.
remember (if a <? b then 1 else 0) as n.
replace n with (0 + n) by lia.
rewrite fold_left_rebase; try lia.
intros. rewrite Heqf. lia.
Qed.
ronum1 b (a :: l) = (if a <? b then 1 else 0) + ronum1 b l.
Proof.
intros. unfold ronum1. simpl.
remember (fun (n : nat) (b0 : A) => n + (if b0 <? b then 1 else 0)) as f.
remember (if a <? b then 1 else 0) as n.
replace n with (0 + n) by lia.
rewrite fold_left_rebase; try lia.
intros. rewrite Heqf. lia.
Qed.
forall i, nth i l Azero <? a = true -> ronum1 a l > 0
Lemma ronum1_gt0 : forall (l : list A) (i : nat) (a : A),
i < length l -> nth i l Azero <? a = true -> ronum1 a l > 0.
Proof.
induction l; intros; simpl in *. lia. destruct i.
- rewrite ronum1_cons. rewrite H0. lia.
- rewrite ronum1_cons.
apply lt_S_n in H. specialize (IHl i a0 H H0). lia.
Qed.
i < length l -> nth i l Azero <? a = true -> ronum1 a l > 0.
Proof.
induction l; intros; simpl in *. lia. destruct i.
- rewrite ronum1_cons. rewrite H0. lia.
- rewrite ronum1_cons.
apply lt_S_n in H. specialize (IHl i a0 H H0). lia.
Qed.
Lemma ronum1_lset_invariant : forall (l : list A) (i : nat) (a b : A),
i < length l ->
ronum1 b (lset l i a) + (if nth i l Azero <? b then 1 else 0) =
ronum1 b l + (if a <? b then 1 else 0).
Proof.
induction l; intros; simpl in *. lia. destruct i.
- unfold ronum1. simpl.
remember (fun (n : nat) (b0 : A) => n + (if b0 <? b then 1 else 0)) as f.
remember (if a0 <? b then 1 else 0) as n.
remember (if a <? b then 1 else 0) as m.
replace n with (0 + n) by lia.
replace m with (0 + m) at 2 by lia.
rewrite !fold_left_rebase; try lia; intros.
all: rewrite Heqf; lia.
- rewrite !ronum1_cons. rewrite <- !Nat.add_assoc. rewrite IHl; auto. lia.
Qed.
i < length l ->
ronum1 b (lset l i a) + (if nth i l Azero <? b then 1 else 0) =
ronum1 b l + (if a <? b then 1 else 0).
Proof.
induction l; intros; simpl in *. lia. destruct i.
- unfold ronum1. simpl.
remember (fun (n : nat) (b0 : A) => n + (if b0 <? b then 1 else 0)) as f.
remember (if a0 <? b then 1 else 0) as n.
remember (if a <? b then 1 else 0) as m.
replace n with (0 + n) by lia.
replace m with (0 + m) at 2 by lia.
rewrite !fold_left_rebase; try lia; intros.
all: rewrite Heqf; lia.
- rewrite !ronum1_cons. rewrite <- !Nat.add_assoc. rewrite IHl; auto. lia.
Qed.
Lemma ronum1_lset : forall (l : list A) (i : nat) (a b : A),
i < length l ->
ronum1 b (lset l i a) =
ronum1 b l + (if a <? b then 1 else 0) -
(if nth i l Azero <? b then 1 else 0).
Proof. intros. pose proof (ronum1_lset_invariant l i a b H). lia. Qed.
i < length l ->
ronum1 b (lset l i a) =
ronum1 b l + (if a <? b then 1 else 0) -
(if nth i l Azero <? b then 1 else 0).
Proof. intros. pose proof (ronum1_lset_invariant l i a b H). lia. Qed.
ronum1 a (lswap l i j) = ronum1 a l
Lemma ronum1_lswap : forall (l : list A) (a : A) (i j : nat),
i < length l -> j < length l -> i < j ->
ronum1 a (lswap l i j) = ronum1 a l.
Proof.
induction l; intros; simpl in *. lia.
destruct i, j; simpl in *; try easy.
- rewrite lswap_cons_0_S; try lia. rewrite !ronum1_cons.
pose proof (ronum1_lset_invariant l j a a0). lia.
- apply lt_S_n in H,H0,H1.
rewrite lswap_cons_S_S; auto.
rewrite !ronum1_cons. rewrite IHl; auto.
Qed.
i < length l -> j < length l -> i < j ->
ronum1 a (lswap l i j) = ronum1 a l.
Proof.
induction l; intros; simpl in *. lia.
destruct i, j; simpl in *; try easy.
- rewrite lswap_cons_0_S; try lia. rewrite !ronum1_cons.
pose proof (ronum1_lset_invariant l j a a0). lia.
- apply lt_S_n in H,H0,H1.
rewrite lswap_cons_S_S; auto.
rewrite !ronum1_cons. rewrite IHl; auto.
Qed.
ronum (lswap l i j) = ronum l + S (2 * j - S i))
Lemma ronum_lswap : forall (l : list A) (i j : nat),
i < length l -> j < length l -> i < j ->
ronum (lswap l i j) = ronum l + S (2 * (j - S i)).
Proof.
induction l; intros; simpl in *. lia.
destruct i, j; try lia; simpl in *.
2:{
apply lt_S_n in H,H0,H1.
rewrite lswap_cons_S_S; auto. simpl. rewrite IHl; auto.
pose proof (natAdd_ASGroup).
asgroup. rewrite ronum1_lswap; auto. }
- clear IHl.
rewrite lswap_cons_0_S; try lia. simpl.
rewrite ronum1_lset; try lia.
Admitted.
End ronum.
Section test.
Let ronum1 := @ronum1 nat Nat.leb.
Let ronum := @ronum nat Nat.leb.
End test.
i < length l -> j < length l -> i < j ->
ronum (lswap l i j) = ronum l + S (2 * (j - S i)).
Proof.
induction l; intros; simpl in *. lia.
destruct i, j; try lia; simpl in *.
2:{
apply lt_S_n in H,H0,H1.
rewrite lswap_cons_S_S; auto. simpl. rewrite IHl; auto.
pose proof (natAdd_ASGroup).
asgroup. rewrite ronum1_lswap; auto. }
- clear IHl.
rewrite lswap_cons_0_S; try lia. simpl.
rewrite ronum1_lset; try lia.
Admitted.
End ronum.
Section test.
Let ronum1 := @ronum1 nat Nat.leb.
Let ronum := @ronum nat Nat.leb.
End test.
The RON of a permutation is odd
Section permExchg.
Context {A} {Altb : A -> A -> bool} (Azero : A).
Notation ronum := (ronum (Altb:=Altb)).
Notation oddPerm := (oddPerm (Altb:=Altb)).
Notation lswap := (lswap Azero).
Context {A} {Altb : A -> A -> bool} (Azero : A).
Notation ronum := (ronum (Altb:=Altb)).
Notation oddPerm := (oddPerm (Altb:=Altb)).
Notation lswap := (lswap Azero).
Swap two elements will change the parity of a permutation
Theorem swap_perm_parity : forall (l : list A) (i0 i1 : nat),
NoDup l ->
i0 < length l -> i1 < length l -> i0 < i1 ->
oddPerm (lswap l i0 i1) = negb (oddPerm l).
Proof.
intros.
unfold oddPerm. rewrite ronum_lswap; auto.
rewrite Nat.add_succ_r. rewrite Nat.odd_succ. rewrite Nat.negb_odd.
rewrite Nat.even_add_mul_2. auto.
Qed.
End permExchg.
NoDup l ->
i0 < length l -> i1 < length l -> i0 < i1 ->
oddPerm (lswap l i0 i1) = negb (oddPerm l).
Proof.
intros.
unfold oddPerm. rewrite ronum_lswap; auto.
rewrite Nat.add_succ_r. rewrite Nat.odd_succ. rewrite Nat.negb_odd.
rewrite Nat.even_add_mul_2. auto.
Qed.
End permExchg.