FinMatrix.Matrix.MatrixGauss
fold_left f (map g l) a = fold_left (fun x y => f x (g y)) l a
Lemma fold_left_map :
forall {tA tB} (l : list tB) (f : tA -> tA -> tA) (g : tB -> tA) a,
fold_left f (map g l) a = fold_left (fun x y => f x (g y)) l a.
Proof.
intros tA tB l. induction l; intros; simpl. auto.
rewrite IHl. auto.
Qed.
forall {tA tB} (l : list tB) (f : tA -> tA -> tA) (g : tB -> tA) a,
fold_left f (map g l) a = fold_left (fun x y => f x (g y)) l a.
Proof.
intros tA tB l. induction l; intros; simpl. auto.
rewrite IHl. auto.
Qed.
fold_right f a (map g l) = fold_right (fun x y => f (g x) y) a l
Lemma fold_right_map :
forall {tA tB} (l : list tB) (f : tA -> tA -> tA) (g : tB -> tA) a,
fold_right f a (map g l) = fold_right (fun x y => f (g x) y) a l.
Proof.
intros tA tB l. induction l; intros; simpl. auto.
rewrite IHl. auto.
Qed.
forall {tA tB} (l : list tB) (f : tA -> tA -> tA) (g : tB -> tA) a,
fold_right f a (map g l) = fold_right (fun x y => f (g x) y) a l.
Proof.
intros tA tB l. induction l; intros; simpl. auto.
rewrite IHl. auto.
Qed.
Section GaussElim.
Context `{HField : Field} `{HAeqDec : Dec _ (@eq tA)}.
Add Field field_inst : (make_field_theory HField).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Infix "+" := Aadd : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Infix "*" := Amul : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Infix "/" := (fun a b => a * / b) : A_scope.
Notation mat r c := (mat tA r c).
Notation smat n := (smat tA n).
Notation mat1 := (@mat1 _ Azero Aone).
Notation madd := (@madd _ Aadd).
Infix "+" := madd : mat_scope.
Notation mmul := (@mmul _ Aadd Azero Amul).
Infix "*" := mmul : mat_scope.
Notation mrowSwap := (@mrowSwap tA).
Notation mrowScale := (@mrowScale _ Amul).
Notation mrowAdd := (@mrowAdd _ Aadd Amul).
Notation mrowSwapM := (@mrowSwapM _ 0 1 _).
Notation mrowScaleM := (@mrowScaleM _ 0 1 _).
Notation mrowAddM := (@mrowAddM _ Aadd 0 1 _).
Notation mrow := (@mrow _ Azero).
Context `{HField : Field} `{HAeqDec : Dec _ (@eq tA)}.
Add Field field_inst : (make_field_theory HField).
Notation "0" := Azero : A_scope.
Notation "1" := Aone : A_scope.
Infix "+" := Aadd : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Infix "*" := Amul : A_scope.
Notation "/ a" := (Ainv a) : A_scope.
Infix "/" := (fun a b => a * / b) : A_scope.
Notation mat r c := (mat tA r c).
Notation smat n := (smat tA n).
Notation mat1 := (@mat1 _ Azero Aone).
Notation madd := (@madd _ Aadd).
Infix "+" := madd : mat_scope.
Notation mmul := (@mmul _ Aadd Azero Amul).
Infix "*" := mmul : mat_scope.
Notation mrowSwap := (@mrowSwap tA).
Notation mrowScale := (@mrowScale _ Amul).
Notation mrowAdd := (@mrowAdd _ Aadd Amul).
Notation mrowSwapM := (@mrowSwapM _ 0 1 _).
Notation mrowScaleM := (@mrowScaleM _ 0 1 _).
Notation mrowAddM := (@mrowAddM _ Aadd 0 1 _).
Notation mrow := (@mrow _ Azero).
Inductive RowOp {n} :=
| ROnop
| ROswap (i j : 'I_(S n))
| ROscale (i : 'I_(S n)) (c : tA)
| ROadd (i j : 'I_(S n)) (c : tA).
行变换列表转换为矩阵
Definition rowOps2mat {n} (l : list (@RowOp n)) : smat (S n) :=
fold_right (fun op M =>
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i c M
| ROadd i j c => mrowAdd i j c M
end) mat1 l.
fold_right (fun op M =>
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i c M
| ROadd i j c => mrowAdd i j c M
end) mat1 l.
rowOps2mat (l1 ++ l2) = rowOps2mat l1 * rowOps2mat l2
Theorem rowOps2mat_app : forall {n} (l1 l2 : list (@RowOp n)),
rowOps2mat (l1 ++ l2) = rowOps2mat l1 * rowOps2mat l2.
Proof.
intros. induction l1; intros; simpl.
- rewrite mmul_1_l; auto.
- destruct a; auto.
+ rewrite IHl1. rewrite mrowSwap_mmul; auto.
+ rewrite IHl1. rewrite mrowScale_mmul; auto.
+ rewrite IHl1. rewrite mrowAdd_mmul; auto.
Qed.
rowOps2mat (l1 ++ l2) = rowOps2mat l1 * rowOps2mat l2.
Proof.
intros. induction l1; intros; simpl.
- rewrite mmul_1_l; auto.
- destruct a; auto.
+ rewrite IHl1. rewrite mrowSwap_mmul; auto.
+ rewrite IHl1. rewrite mrowScale_mmul; auto.
+ rewrite IHl1. rewrite mrowAdd_mmul; auto.
Qed.
Definition rowOps2matInv {n} (l : list (@RowOp n)) : smat (S n) :=
fold_left (fun M op =>
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i (/c) M
| ROadd i j c => mrowAdd i j (-c) M
end) l mat1.
Section helper.
Definition roValid {n} (op : @RowOp n) : Prop :=
match op with
| ROnop => True
| ROswap i j => True
| ROscale i c => c <> 0
| ROadd i j c => i <> j
end.
Definition ro2mat {n} (op : @RowOp n) : smat (S n) :=
match op with
| ROnop => mat1
| ROswap i j => mrowSwapM i j
| ROscale i c => mrowScaleM i c
| ROadd i j c => mrowAddM i j c
end.
Definition ro2matInv {n} (op : @RowOp n) : smat (S n) :=
match op with
| ROnop => mat1
| ROswap i j => mrowSwapM i j
| ROscale i c => mrowScaleM i (/c)
| ROadd i j c => mrowAddM i j (-c)
end.
Lemma mmul_ro2mat_l : forall n (op : RowOp) (M : smat (S n)),
ro2mat op * M =
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i c M
| ROadd i j c => mrowAdd i j c M
end.
Proof.
intros. unfold ro2mat. destruct op.
- apply mmul_1_l.
- rewrite mrowSwap_eq; auto.
- rewrite mrowScale_eq; auto.
- rewrite mrowAdd_eq; auto.
Qed.
Lemma mmul_ro2matInv_l : forall n (op : RowOp) (M : smat (S n)),
ro2matInv op * M =
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i (/ c) M
| ROadd i j c => mrowAdd i j (- c) M
end.
Proof.
intros. unfold ro2matInv. destruct op.
- apply mmul_1_l.
- rewrite mrowSwap_eq; auto.
- rewrite mrowScale_eq; auto.
- rewrite mrowAdd_eq; auto.
Qed.
Lemma mmul_ro2mat_ro2matInv : forall {n} (op : @RowOp n),
roValid op -> ro2mat op * ro2matInv op = mat1.
Proof.
intros. hnf in H. destruct op; simpl.
- rewrite mmul_1_l; auto.
- rewrite mmul_mrowSwapM_mrowSwapM; auto.
- rewrite mmul_mrowScaleM_mrowScaleM; auto.
- rewrite mmul_mrowAddM_mrowAddM; auto.
Qed.
Lemma mmul_ro2matInv_ro2mat : forall {n} (op : @RowOp n),
roValid op -> ro2matInv op * ro2mat op = mat1.
Proof.
intros. hnf in H. destruct op; simpl.
- rewrite mmul_1_l; auto.
- rewrite mmul_mrowSwapM_mrowSwapM; auto.
- replace c with (/ / c) at 2.
rewrite mmul_mrowScaleM_mrowScaleM; auto.
apply field_inv_neq0_iff; auto.
rewrite field_inv_inv; auto.
- replace c with (- - c) at 2 by field.
rewrite mmul_mrowAddM_mrowAddM; auto.
Qed.
fold_left (fun M op =>
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i (/c) M
| ROadd i j c => mrowAdd i j (-c) M
end) l mat1.
Section helper.
Definition roValid {n} (op : @RowOp n) : Prop :=
match op with
| ROnop => True
| ROswap i j => True
| ROscale i c => c <> 0
| ROadd i j c => i <> j
end.
Definition ro2mat {n} (op : @RowOp n) : smat (S n) :=
match op with
| ROnop => mat1
| ROswap i j => mrowSwapM i j
| ROscale i c => mrowScaleM i c
| ROadd i j c => mrowAddM i j c
end.
Definition ro2matInv {n} (op : @RowOp n) : smat (S n) :=
match op with
| ROnop => mat1
| ROswap i j => mrowSwapM i j
| ROscale i c => mrowScaleM i (/c)
| ROadd i j c => mrowAddM i j (-c)
end.
Lemma mmul_ro2mat_l : forall n (op : RowOp) (M : smat (S n)),
ro2mat op * M =
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i c M
| ROadd i j c => mrowAdd i j c M
end.
Proof.
intros. unfold ro2mat. destruct op.
- apply mmul_1_l.
- rewrite mrowSwap_eq; auto.
- rewrite mrowScale_eq; auto.
- rewrite mrowAdd_eq; auto.
Qed.
Lemma mmul_ro2matInv_l : forall n (op : RowOp) (M : smat (S n)),
ro2matInv op * M =
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i (/ c) M
| ROadd i j c => mrowAdd i j (- c) M
end.
Proof.
intros. unfold ro2matInv. destruct op.
- apply mmul_1_l.
- rewrite mrowSwap_eq; auto.
- rewrite mrowScale_eq; auto.
- rewrite mrowAdd_eq; auto.
Qed.
Lemma mmul_ro2mat_ro2matInv : forall {n} (op : @RowOp n),
roValid op -> ro2mat op * ro2matInv op = mat1.
Proof.
intros. hnf in H. destruct op; simpl.
- rewrite mmul_1_l; auto.
- rewrite mmul_mrowSwapM_mrowSwapM; auto.
- rewrite mmul_mrowScaleM_mrowScaleM; auto.
- rewrite mmul_mrowAddM_mrowAddM; auto.
Qed.
Lemma mmul_ro2matInv_ro2mat : forall {n} (op : @RowOp n),
roValid op -> ro2matInv op * ro2mat op = mat1.
Proof.
intros. hnf in H. destruct op; simpl.
- rewrite mmul_1_l; auto.
- rewrite mmul_mrowSwapM_mrowSwapM; auto.
- replace c with (/ / c) at 2.
rewrite mmul_mrowScaleM_mrowScaleM; auto.
apply field_inv_neq0_iff; auto.
rewrite field_inv_inv; auto.
- replace c with (- - c) at 2 by field.
rewrite mmul_mrowAddM_mrowAddM; auto.
Qed.
rowOps2mat has an equivalent form with matrix multiplication.
Lemma rowOps2mat_eq : forall {n} (l : list (@RowOp n)),
rowOps2mat l = fold_right mmul mat1 (map ro2mat l).
Proof.
intros. unfold rowOps2mat. rewrite fold_right_map. f_equal.
extensionality M. extensionality op. rewrite mmul_ro2mat_l. auto.
Qed.
rowOps2mat l = fold_right mmul mat1 (map ro2mat l).
Proof.
intros. unfold rowOps2mat. rewrite fold_right_map. f_equal.
extensionality M. extensionality op. rewrite mmul_ro2mat_l. auto.
Qed.
rowOps2matInv has an equivalent form with matrix multiplication.
Lemma rowOps2matInv_eq : forall {n} (l : list (@RowOp n)),
rowOps2matInv l = fold_left (fun x y => y * x) (map ro2matInv l) mat1.
Proof.
intros. unfold rowOps2matInv. rewrite fold_left_map. f_equal.
extensionality M. extensionality op. rewrite mmul_ro2matInv_l. auto.
Qed.
End helper.
rowOps2matInv l = fold_left (fun x y => y * x) (map ro2matInv l) mat1.
Proof.
intros. unfold rowOps2matInv. rewrite fold_left_map. f_equal.
extensionality M. extensionality op. rewrite mmul_ro2matInv_l. auto.
Qed.
End helper.
rowOps2matInv l * rowOps2mat l = mat1
Lemma mmul_rowOps2matInv_rowOps2mat_eq1 : forall {n} (l : list (@RowOp n)),
Forall roValid l -> rowOps2matInv l * rowOps2mat l = mat1.
Proof.
intros.
rewrite rowOps2mat_eq. rewrite rowOps2matInv_eq. rewrite <- fold_left_rev_right.
induction l; simpl. apply mmul_1_l.
replace (fold_right mmul mat1 (rev (map ro2matInv l) ++ [ro2matInv a]))
with ((fold_right mmul mat1 (rev (map ro2matInv l))) * (ro2matInv a)).
2: {
remember (rev (map ro2matInv l)). remember (ro2matInv a).
clear Heqv IHl Heql0.
induction l0; simpl. rewrite mmul_1_l, mmul_1_r; auto.
rewrite mmul_assoc. f_equal. rewrite IHl0. auto. }
rewrite mmul_assoc. rewrite <- (mmul_assoc (ro2matInv a)).
rewrite mmul_ro2matInv_ro2mat. rewrite mmul_1_l. apply IHl.
inversion H; auto. inversion H; auto.
Qed.
Forall roValid l -> rowOps2matInv l * rowOps2mat l = mat1.
Proof.
intros.
rewrite rowOps2mat_eq. rewrite rowOps2matInv_eq. rewrite <- fold_left_rev_right.
induction l; simpl. apply mmul_1_l.
replace (fold_right mmul mat1 (rev (map ro2matInv l) ++ [ro2matInv a]))
with ((fold_right mmul mat1 (rev (map ro2matInv l))) * (ro2matInv a)).
2: {
remember (rev (map ro2matInv l)). remember (ro2matInv a).
clear Heqv IHl Heql0.
induction l0; simpl. rewrite mmul_1_l, mmul_1_r; auto.
rewrite mmul_assoc. f_equal. rewrite IHl0. auto. }
rewrite mmul_assoc. rewrite <- (mmul_assoc (ro2matInv a)).
rewrite mmul_ro2matInv_ro2mat. rewrite mmul_1_l. apply IHl.
inversion H; auto. inversion H; auto.
Qed.
rowOps2mat l * rowOps2matInv l = mat1
Lemma mmul_rowOps2mat_rowOps2matInv_eq1 : forall {n} (l : list (@RowOp n)),
Forall roValid l -> rowOps2mat l * rowOps2matInv l = mat1.
Proof.
intros.
rewrite rowOps2mat_eq. rewrite rowOps2matInv_eq. rewrite <- fold_left_rev_right.
induction l; simpl. apply mmul_1_l.
replace (fold_right mmul mat1 (rev (map ro2matInv l) ++ [ro2matInv a]))
with ((fold_right mmul mat1 (rev (map ro2matInv l))) * (ro2matInv a)).
2: {
remember (rev (map ro2matInv l)). remember (ro2matInv a).
clear Heqv IHl Heql0.
induction l0; simpl. rewrite mmul_1_l, mmul_1_r; auto.
rewrite mmul_assoc. f_equal. rewrite IHl0. auto. }
rewrite <- !mmul_assoc. rewrite (mmul_assoc (ro2mat a)). rewrite IHl.
rewrite mmul_1_r. rewrite mmul_ro2mat_ro2matInv. auto.
inversion H; auto. inversion H; auto.
Qed.
Forall roValid l -> rowOps2mat l * rowOps2matInv l = mat1.
Proof.
intros.
rewrite rowOps2mat_eq. rewrite rowOps2matInv_eq. rewrite <- fold_left_rev_right.
induction l; simpl. apply mmul_1_l.
replace (fold_right mmul mat1 (rev (map ro2matInv l) ++ [ro2matInv a]))
with ((fold_right mmul mat1 (rev (map ro2matInv l))) * (ro2matInv a)).
2: {
remember (rev (map ro2matInv l)). remember (ro2matInv a).
clear Heqv IHl Heql0.
induction l0; simpl. rewrite mmul_1_l, mmul_1_r; auto.
rewrite mmul_assoc. f_equal. rewrite IHl0. auto. }
rewrite <- !mmul_assoc. rewrite (mmul_assoc (ro2mat a)). rewrite IHl.
rewrite mmul_1_r. rewrite mmul_ro2mat_ro2matInv. auto.
inversion H; auto. inversion H; auto.
Qed.
rowOps2mat l * M = N -> rowOps2matInv l * N = M
Lemma rowOps2mat_imply_rowOps2matInv : forall {n} (l : list RowOp) (M N : smat (S n)),
Forall roValid l -> (rowOps2mat l) * M = N -> (rowOps2matInv l) * N = M.
Proof.
intros. rewrite <- H0. rewrite <- mmul_assoc.
rewrite mmul_rowOps2matInv_rowOps2mat_eq1; auto. rewrite mmul_1_l. auto.
Qed.
Forall roValid l -> (rowOps2mat l) * M = N -> (rowOps2matInv l) * N = M.
Proof.
intros. rewrite <- H0. rewrite <- mmul_assoc.
rewrite mmul_rowOps2matInv_rowOps2mat_eq1; auto. rewrite mmul_1_l. auto.
Qed.
rowOps2matInv l * M = N -> rowOps2mat l * N = M
Lemma rowOps2matInv_imply_rowOps2mat : forall {n} (l : list RowOp) (M N : smat (S n)),
Forall roValid l -> (rowOps2matInv l) * M = N -> (rowOps2mat l) * N = M.
Proof.
intros. rewrite <- H0. rewrite <- mmul_assoc.
rewrite mmul_rowOps2mat_rowOps2matInv_eq1; auto. rewrite mmul_1_l. auto.
Qed.
Forall roValid l -> (rowOps2matInv l) * M = N -> (rowOps2mat l) * N = M.
Proof.
intros. rewrite <- H0. rewrite <- mmul_assoc.
rewrite mmul_rowOps2mat_rowOps2matInv_eq1; auto. rewrite mmul_1_l. auto.
Qed.
(l1 * l2 * ... * ln * 1) * a = l1 * l2 * ... * ln * (a * 1)
Lemma fold_right_mmul_rebase : forall {n} (l : list (smat n)) (a : smat n),
fold_right mmul mat1 l * a = fold_right mmul a l.
Proof.
intros n. induction l; intros; simpl. rewrite mmul_1_l; auto.
rewrite mmul_assoc. rewrite IHl. auto.
Qed.
fold_right mmul mat1 l * a = fold_right mmul a l.
Proof.
intros n. induction l; intros; simpl. rewrite mmul_1_l; auto.
rewrite mmul_assoc. rewrite IHl. auto.
Qed.
rowOps2matInv (l1 ++ l2) = rowOps2matInv l2 * rowOps2matInv l1
Theorem rowOps2matInv_app : forall {n} (l1 l2 : list (@RowOp n)),
rowOps2matInv (l1 ++ l2) = rowOps2matInv l2 * rowOps2matInv l1.
Proof.
intros n. unfold rowOps2matInv.
remember (fun (M : smat (S n)) (op : RowOp) =>
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i (/ c) M
| ROadd i j c => mrowAdd i j (- c) M
end) as f.
intros l1 l2. revert l1. induction l2.
- intros. simpl. rewrite app_nil_r. rewrite mmul_1_l; auto.
- intros. simpl.
replace (l1 ++ a :: l2)%list with ((l1 ++ [a]) ++ l2)%list;
[|rewrite <- app_assoc; auto].
rewrite IHl2. rewrite fold_left_app; simpl.
replace (f (fold_left f l1 mat1) a)
with (ro2matInv a * (fold_left f l1 mat1)).
2:{ rewrite mmul_ro2matInv_l. rewrite Heqf; auto. }
replace (fold_left f l2 (f mat1 a))
with ((fold_left f l2 mat1) * ro2matInv a).
2:{
clear IHl2. rename l2 into l. clear l1.
assert (f = fun (M : smat (S n)) op => ro2matInv op * M).
{ rewrite Heqf. unfold ro2matInv.
extensionality M. extensionality op. destruct op.
rewrite mmul_1_l; auto.
rewrite mrowSwap_eq; auto.
rewrite mrowScale_eq; auto.
rewrite mrowAdd_eq; auto. }
rewrite H.
rewrite <- (fold_left_map l (fun x y => y * x) ro2matInv).
rewrite <- (fold_left_map l (fun x y => y * x) ro2matInv).
rewrite <- fold_left_rev_right.
rewrite <- fold_left_rev_right.
remember (rev (map ro2matInv l)) as L.
rewrite mmul_1_r.
remember (ro2matInv a) as b.
rewrite fold_right_mmul_rebase. auto. }
rewrite mmul_assoc. auto.
Qed.
rowOps2matInv (l1 ++ l2) = rowOps2matInv l2 * rowOps2matInv l1.
Proof.
intros n. unfold rowOps2matInv.
remember (fun (M : smat (S n)) (op : RowOp) =>
match op with
| ROnop => M
| ROswap i j => mrowSwap i j M
| ROscale i c => mrowScale i (/ c) M
| ROadd i j c => mrowAdd i j (- c) M
end) as f.
intros l1 l2. revert l1. induction l2.
- intros. simpl. rewrite app_nil_r. rewrite mmul_1_l; auto.
- intros. simpl.
replace (l1 ++ a :: l2)%list with ((l1 ++ [a]) ++ l2)%list;
[|rewrite <- app_assoc; auto].
rewrite IHl2. rewrite fold_left_app; simpl.
replace (f (fold_left f l1 mat1) a)
with (ro2matInv a * (fold_left f l1 mat1)).
2:{ rewrite mmul_ro2matInv_l. rewrite Heqf; auto. }
replace (fold_left f l2 (f mat1 a))
with ((fold_left f l2 mat1) * ro2matInv a).
2:{
clear IHl2. rename l2 into l. clear l1.
assert (f = fun (M : smat (S n)) op => ro2matInv op * M).
{ rewrite Heqf. unfold ro2matInv.
extensionality M. extensionality op. destruct op.
rewrite mmul_1_l; auto.
rewrite mrowSwap_eq; auto.
rewrite mrowScale_eq; auto.
rewrite mrowAdd_eq; auto. }
rewrite H.
rewrite <- (fold_left_map l (fun x y => y * x) ro2matInv).
rewrite <- (fold_left_map l (fun x y => y * x) ro2matInv).
rewrite <- fold_left_rev_right.
rewrite <- fold_left_rev_right.
remember (rev (map ro2matInv l)) as L.
rewrite mmul_1_r.
remember (ro2matInv a) as b.
rewrite fold_right_mmul_rebase. auto. }
rewrite mmul_assoc. auto.
Qed.
Definition mLeftLowerZeros {n} (M : smat n) (x : nat) : Prop :=
forall (i j : 'I_n), j < x -> j < i -> M.[i].[j] = 0.
Lemma mLeftLowerZeros_less : forall {n} (M : smat (S n)) (x : nat),
mLeftLowerZeros M (S x) -> mLeftLowerZeros M x.
Proof. intros. hnf in *; intros. rewrite H; auto. Qed.
Lemma mLeftLowerZeros_S : forall {n} (M : smat (S n)) (x : nat),
(forall (i : 'I_(S n)), x < i -> M i #x = 0) ->
mLeftLowerZeros M x -> mLeftLowerZeros M (S x).
Proof.
intros. hnf in *; intros. destruct (x ??= j).
- assert (j = #x). rewrite e. rewrite nat2finS_fin2nat; auto.
rewrite H3. rewrite H; auto. lia.
- rewrite H0; auto. lia.
Qed.
forall (i j : 'I_n), j < x -> j < i -> M.[i].[j] = 0.
Lemma mLeftLowerZeros_less : forall {n} (M : smat (S n)) (x : nat),
mLeftLowerZeros M (S x) -> mLeftLowerZeros M x.
Proof. intros. hnf in *; intros. rewrite H; auto. Qed.
Lemma mLeftLowerZeros_S : forall {n} (M : smat (S n)) (x : nat),
(forall (i : 'I_(S n)), x < i -> M i #x = 0) ->
mLeftLowerZeros M x -> mLeftLowerZeros M (S x).
Proof.
intros. hnf in *; intros. destruct (x ??= j).
- assert (j = #x). rewrite e. rewrite nat2finS_fin2nat; auto.
rewrite H3. rewrite H; auto. lia.
- rewrite H0; auto. lia.
Qed.
方阵 M 是上三角矩阵(即,左下角都是0)
Definition mUpperTrig {n} (M : smat n) : Prop :=
mLeftLowerZeros M n.
Lemma mat1_mLeftLowerZeros : forall {n}, mLeftLowerZeros (@mat1 n) n.
Proof.
intros. hnf. intros. rewrite mnth_mat1_diff; auto.
assert (fin2nat i <> j); try lia. fin.
Qed.
Lemma mat1_mUpperTrig : forall {n}, mUpperTrig (@mat1 n).
Proof. intros. unfold mUpperTrig. apply mat1_mLeftLowerZeros. Qed.
mLeftLowerZeros M n.
Lemma mat1_mLeftLowerZeros : forall {n}, mLeftLowerZeros (@mat1 n) n.
Proof.
intros. hnf. intros. rewrite mnth_mat1_diff; auto.
assert (fin2nat i <> j); try lia. fin.
Qed.
Lemma mat1_mUpperTrig : forall {n}, mUpperTrig (@mat1 n).
Proof. intros. unfold mUpperTrig. apply mat1_mLeftLowerZeros. Qed.
方阵 M 的前 x 行/列的对角线都是 1。当 x=n 时,整个矩阵的对角线是 1
Definition mDiagonalOne {n} (M : smat n) (x : nat) : Prop :=
forall (i : 'I_n), i < x -> M i i = 1.
Lemma mat1_mDiagonalOne : forall {n}, mDiagonalOne (@mat1 n) n.
Proof. intros. hnf; intros. rewrite mnth_mat1_same; auto. Qed.
forall (i : 'I_n), i < x -> M i i = 1.
Lemma mat1_mDiagonalOne : forall {n}, mDiagonalOne (@mat1 n) n.
Proof. intros. hnf; intros. rewrite mnth_mat1_same; auto. Qed.
方阵 M 的对角线都是 1
Definition mDiagonalOnes {n} (M : smat n) : Prop := mDiagonalOne M n.
Lemma mat1_mDiagonalOnes : forall {n}, mDiagonalOnes (@mat1 n).
Proof. intros. unfold mDiagonalOnes. apply mat1_mDiagonalOne. Qed.
Lemma mat1_mDiagonalOnes : forall {n}, mDiagonalOnes (@mat1 n).
Proof. intros. unfold mDiagonalOnes. apply mat1_mDiagonalOne. Qed.
方阵 M 是单位上三角矩阵(即,左下角全0 + 对角线全1)
单位上三角矩阵,任意下面的行的倍数加到上面,仍然是单位上三角矩阵
Lemma mrowAdd_mUnitUpperTrig : forall {n} (M : smat (S n)) (i j : 'I_(S n)),
mUnitUpperTrig M ->
i < j ->
mUnitUpperTrig (mrowAdd i j (- (M i j))%A M).
Proof.
intros. unfold mUnitUpperTrig in *. destruct H. split; hnf in *; intros.
- unfold mrowAdd; fin. subst.
rewrite !(H _ j0); auto. ring.
pose proof (fin2nat_lt j). lia.
- unfold mrowAdd; fin. fin2nat.
rewrite H1; auto; fin. rewrite (H _ i); auto. ring.
Qed.
mUnitUpperTrig M ->
i < j ->
mUnitUpperTrig (mrowAdd i j (- (M i j))%A M).
Proof.
intros. unfold mUnitUpperTrig in *. destruct H. split; hnf in *; intros.
- unfold mrowAdd; fin. subst.
rewrite !(H _ j0); auto. ring.
pose proof (fin2nat_lt j). lia.
- unfold mrowAdd; fin. fin2nat.
rewrite H1; auto; fin. rewrite (H _ i); auto. ring.
Qed.
方阵 M 的后 x 列的右上角(不含对角线)全是 0。
当 x = n 时,整个矩阵右上角是 0
Definition mRightUpperZeros {n} (M : smat n) (x : nat) : Prop :=
forall (i j : 'I_n), n - x <= j -> i < j -> M i j = 0.
Lemma mat1_mRightUpperZeros : forall {n}, mRightUpperZeros (@mat1 n) n.
Proof.
intros. hnf. intros. rewrite mnth_mat1_diff; auto.
assert (fin2nat i <> j); try lia. fin.
Qed.
forall (i j : 'I_n), n - x <= j -> i < j -> M i j = 0.
Lemma mat1_mRightUpperZeros : forall {n}, mRightUpperZeros (@mat1 n) n.
Proof.
intros. hnf. intros. rewrite mnth_mat1_diff; auto.
assert (fin2nat i <> j); try lia. fin.
Qed.
Fixpoint getPivot {n} (M : smat (S n)) (x : nat) (j : 'I_(S n))
: option ('I_(S n)) :=
match x with
| O => None
| S x' =>
if Aeqdec (M #(S n - x) j) 0
then getPivot M x' j
else Some #(S n - x)
end.
Lemma getPivot_imply_nonzero :
forall (x : nat) {n} (M : smat (S n)) (i j : 'I_(S n)),
getPivot M x j = Some i -> M i j <> 0.
Proof.
induction x; intros.
- simpl in H. easy.
- simpl in H. destruct (Aeqdec (M #(n - x) j) 0).
+ apply IHx in H; auto.
+ inv H. auto.
Qed.
Lemma getPivot_max : forall (x : nat) {n} (M : smat (S n)) (j r : 'I_(S n)),
getPivot M x j = Some r -> r < S n.
Proof.
induction x; intros.
- simpl in H. easy.
- simpl in H. destruct Aeqdec as [E|E].
+ apply IHx in H. auto.
+ inversion H. rewrite fin2nat_nat2finS; lia.
Qed.
Lemma getPivot_min: forall (x : nat) {n} (M : smat (S n)) (j r : 'I_(S n)),
getPivot M x j = Some r -> r >= S n - x.
Proof.
induction x; intros.
- simpl in H. easy.
- simpl in H. destruct Aeqdec as [E|E].
+ apply IHx in H. lia.
+ inversion H. rewrite fin2nat_nat2finS; lia.
Qed.
: option ('I_(S n)) :=
match x with
| O => None
| S x' =>
if Aeqdec (M #(S n - x) j) 0
then getPivot M x' j
else Some #(S n - x)
end.
Lemma getPivot_imply_nonzero :
forall (x : nat) {n} (M : smat (S n)) (i j : 'I_(S n)),
getPivot M x j = Some i -> M i j <> 0.
Proof.
induction x; intros.
- simpl in H. easy.
- simpl in H. destruct (Aeqdec (M #(n - x) j) 0).
+ apply IHx in H; auto.
+ inv H. auto.
Qed.
Lemma getPivot_max : forall (x : nat) {n} (M : smat (S n)) (j r : 'I_(S n)),
getPivot M x j = Some r -> r < S n.
Proof.
induction x; intros.
- simpl in H. easy.
- simpl in H. destruct Aeqdec as [E|E].
+ apply IHx in H. auto.
+ inversion H. rewrite fin2nat_nat2finS; lia.
Qed.
Lemma getPivot_min: forall (x : nat) {n} (M : smat (S n)) (j r : 'I_(S n)),
getPivot M x j = Some r -> r >= S n - x.
Proof.
induction x; intros.
- simpl in H. easy.
- simpl in H. destruct Aeqdec as [E|E].
+ apply IHx in H. lia.
+ inversion H. rewrite fin2nat_nat2finS; lia.
Qed.
Fixpoint elimDown {n} (M : smat (S n)) (x : nat) (j : 'I_(S n))
: list RowOp * smat (S n) :=
match x with
| O => ([], M)
| S x' =>
let fx : 'I_(S n) := #(S n - x) in
let a : tA := M.[fx].[j] in
if Aeqdec a 0
then elimDown M x' j
else
let op1 := ROadd fx j (-a)%A in
let M1 := mrowAdd fx j (-a)%A M in
let (l2, M2) := elimDown M1 x' j in
((l2 ++ [op1])%list, M2)
end.
对 M 向下消元得到 (l, M'),则 l 都是有效的
Lemma elimDown_rowOpValid :
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
x < S n - j -> elimDown M x j = (l, M') -> Forall roValid l.
Proof.
induction x; intros; simpl in *.
- inversion H0. constructor.
-
destruct (Aeqdec (M #(n - x) j) 0) as [E|E].
+ apply IHx in H0; auto. lia.
+ destruct elimDown as [l2 M2] eqn: T2.
apply IHx in T2; try lia. inversion H0.
apply Forall_app. split; auto. repeat constructor. hnf. intro.
destruct j.
assert (n - x = i).
{ erewrite nat2finS_eq in H1. apply fin_eq_iff in H1. auto. }
fin. subst. destruct (n - x) eqn:H2. fin. fin.
Unshelve. fin.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
x < S n - j -> elimDown M x j = (l, M') -> Forall roValid l.
Proof.
induction x; intros; simpl in *.
- inversion H0. constructor.
-
destruct (Aeqdec (M #(n - x) j) 0) as [E|E].
+ apply IHx in H0; auto. lia.
+ destruct elimDown as [l2 M2] eqn: T2.
apply IHx in T2; try lia. inversion H0.
apply Forall_app. split; auto. repeat constructor. hnf. intro.
destruct j.
assert (n - x = i).
{ erewrite nat2finS_eq in H1. apply fin_eq_iff in H1. auto. }
fin. subst. destruct (n - x) eqn:H2. fin. fin.
Unshelve. fin.
Qed.
对 M 向下消元得到 (l, M'),则 l * M = M'
Lemma elimDown_eq :
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
elimDown M x j = (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros; simpl in *.
- inversion H. simpl. apply mmul_1_l.
-
destruct (Aeqdec (M #(n - x) j) 0) as [E|E].
+ apply IHx in H; auto.
+ destruct elimDown as [l2 M2] eqn: T2.
apply IHx in T2. inversion H. rewrite <- H2, <- T2.
rewrite rowOps2mat_app. simpl.
rewrite !mmul_assoc. f_equal.
rewrite <- mrowAdd_mmul. rewrite mmul_1_l. auto.
Qed.
Lemma elimDown_keep_former_row :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimDown M x y = (l, M') ->
M y y = 1 ->
x < S n - y ->
(forall i j : 'I_(S n), i < S n - x -> M' i j = M i j).
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct Aeqdec as [E|E].
+ apply IHx with (i:=i)(j:=j) in H; auto; try lia.
+ destruct elimDown as [l2 M2] eqn: T2.
inversion H. rewrite <- H5. apply IHx with (i:=i)(j:=j) in T2; try lia.
* rewrite T2. unfold mrowAdd; fin.
* unfold mrowAdd; fin.
Qed.
Lemma elimDown_latter_row_0:
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimDown M x y = (l, M') ->
M y y = 1 ->
x < S n - y ->
(forall i : 'I_(S n), S n - x <= i -> M' i y = 0).
Proof.
induction x; intros.
- pose proof (fin2nat_lt i). lia.
- simpl in H.
destruct (Aeqdec (M #(n - x) y) 0) as [E|E].
+ destruct (i ??= n - x) as [E1|E1].
* apply elimDown_keep_former_row with (i:=i)(j:=y) in H; auto; try lia.
subst. rewrite H. rewrite <- E1 in E. rewrite nat2finS_fin2nat in E; auto.
* apply IHx with (i:=i) in H; auto; try lia.
+ destruct elimDown as [l2 M2] eqn: T2.
inversion H. rewrite <- H5.
replace (S n - S x) with (n - x) in H2 by lia.
destruct (i ??= n - x) as [E1|E1].
* apply elimDown_keep_former_row with (i:=i)(j:=y) in T2; auto; try lia.
** rewrite T2. unfold mrowAdd; fin. rewrite H0. rewrite <- E0. fin.
** unfold mrowAdd; fin.
* apply IHx with (i:=i) in T2; auto; try lia. unfold mrowAdd; fin.
Qed.
Lemma elimDown_mLowerLeftZeros_aux:
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimDown M x y = (l, M') ->
mLeftLowerZeros M (y) ->
x < S n - y ->
M y y = 1 ->
mLeftLowerZeros M' (y).
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct (Aeqdec (M #(n - x) y) 0) as [E|E].
+ apply IHx in H; auto; try lia.
+ destruct elimDown as [l2 M2] eqn: T2.
inversion H. rewrite <- H5.
hnf; intros.
destruct (x ??< S n - y) as [E1|E1].
* apply IHx in T2; auto; try lia; clear IHx.
** hnf; intros. unfold mrowAdd; fin.
rewrite !(H0 _ j0); auto. ring.
** unfold mrowAdd; fin.
* apply elimDown_keep_former_row with (i:=i)(j:=j) in T2; auto; try lia.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
elimDown M x j = (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros; simpl in *.
- inversion H. simpl. apply mmul_1_l.
-
destruct (Aeqdec (M #(n - x) j) 0) as [E|E].
+ apply IHx in H; auto.
+ destruct elimDown as [l2 M2] eqn: T2.
apply IHx in T2. inversion H. rewrite <- H2, <- T2.
rewrite rowOps2mat_app. simpl.
rewrite !mmul_assoc. f_equal.
rewrite <- mrowAdd_mmul. rewrite mmul_1_l. auto.
Qed.
Lemma elimDown_keep_former_row :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimDown M x y = (l, M') ->
M y y = 1 ->
x < S n - y ->
(forall i j : 'I_(S n), i < S n - x -> M' i j = M i j).
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct Aeqdec as [E|E].
+ apply IHx with (i:=i)(j:=j) in H; auto; try lia.
+ destruct elimDown as [l2 M2] eqn: T2.
inversion H. rewrite <- H5. apply IHx with (i:=i)(j:=j) in T2; try lia.
* rewrite T2. unfold mrowAdd; fin.
* unfold mrowAdd; fin.
Qed.
Lemma elimDown_latter_row_0:
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimDown M x y = (l, M') ->
M y y = 1 ->
x < S n - y ->
(forall i : 'I_(S n), S n - x <= i -> M' i y = 0).
Proof.
induction x; intros.
- pose proof (fin2nat_lt i). lia.
- simpl in H.
destruct (Aeqdec (M #(n - x) y) 0) as [E|E].
+ destruct (i ??= n - x) as [E1|E1].
* apply elimDown_keep_former_row with (i:=i)(j:=y) in H; auto; try lia.
subst. rewrite H. rewrite <- E1 in E. rewrite nat2finS_fin2nat in E; auto.
* apply IHx with (i:=i) in H; auto; try lia.
+ destruct elimDown as [l2 M2] eqn: T2.
inversion H. rewrite <- H5.
replace (S n - S x) with (n - x) in H2 by lia.
destruct (i ??= n - x) as [E1|E1].
* apply elimDown_keep_former_row with (i:=i)(j:=y) in T2; auto; try lia.
** rewrite T2. unfold mrowAdd; fin. rewrite H0. rewrite <- E0. fin.
** unfold mrowAdd; fin.
* apply IHx with (i:=i) in T2; auto; try lia. unfold mrowAdd; fin.
Qed.
Lemma elimDown_mLowerLeftZeros_aux:
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimDown M x y = (l, M') ->
mLeftLowerZeros M (y) ->
x < S n - y ->
M y y = 1 ->
mLeftLowerZeros M' (y).
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct (Aeqdec (M #(n - x) y) 0) as [E|E].
+ apply IHx in H; auto; try lia.
+ destruct elimDown as [l2 M2] eqn: T2.
inversion H. rewrite <- H5.
hnf; intros.
destruct (x ??< S n - y) as [E1|E1].
* apply IHx in T2; auto; try lia; clear IHx.
** hnf; intros. unfold mrowAdd; fin.
rewrite !(H0 _ j0); auto. ring.
** unfold mrowAdd; fin.
* apply elimDown_keep_former_row with (i:=i)(j:=j) in T2; auto; try lia.
Qed.
若 M 前 x 列左下是0,则对 M 的后 S n - S x 列消元后的 M' 的前 S x 列左下是 0
Lemma elimDown_mLeftLowerZeros :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
elimDown M (S n - S x) #x = (l, M') ->
x < S n ->
M #x #x = 1 ->
mLeftLowerZeros M x ->
mLeftLowerZeros M' (S x).
Proof.
intros. hnf; intros.
destruct (j ??= x) as [E|E].
- apply elimDown_latter_row_0 with (i:=i) in H; auto; subst; fin.
- apply elimDown_mLowerLeftZeros_aux in H; auto; fin.
rewrite H; auto.
pose proof (fin2nat_lt j). lia.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
elimDown M (S n - S x) #x = (l, M') ->
x < S n ->
M #x #x = 1 ->
mLeftLowerZeros M x ->
mLeftLowerZeros M' (S x).
Proof.
intros. hnf; intros.
destruct (j ??= x) as [E|E].
- apply elimDown_latter_row_0 with (i:=i) in H; auto; subst; fin.
- apply elimDown_mLowerLeftZeros_aux in H; auto; fin.
rewrite H; auto.
pose proof (fin2nat_lt j). lia.
Qed.
Fixpoint toREF {n} (M : smat (S n)) (x : nat)
: option (list RowOp * smat (S n)) :=
match x with
| O => Some ([], M)
| S x' =>
let j : 'I_(S n) := #(S n - x) in
match getPivot M x j with
| None => None
| Some i =>
let (op1, M1) :=
(if i ??= j
then (ROnop, M)
else (ROswap j i, mrowSwap j i M)) in
let (op2, M2) :=
(let c : tA := M1.[j].[j] in
(ROscale j (/c), mrowScale j (/c) M1)) in
let (l3, M3) := elimDown M2 x' j in
match toREF M3 x' with
| None => None
| Some (l4, M4) => Some ((l4 ++ l3 ++ [op2; op1])%list, M4)
end
end
end.
对 M 行变换得到 (l, M'),则 l * M = M'
Lemma toREF_eq : forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M x = Some (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros.
- simpl in H. inversion H. simpl. apply mmul_1_l.
- unfold toREF in H; fold (@toREF (n)) in H. destruct getPivot as [i|] eqn: Hi; try easy.
replace (S n - S x) with (n - x) in * by lia.
destruct (i ??= #(n - x)) as [E|E].
+
destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4. inversion H. rewrite <- H2, <- T4.
apply elimDown_eq in T3. rewrite <- T3.
rewrite !rowOps2mat_app. simpl. rewrite !mmul_assoc. f_equal. f_equal.
rewrite <- mrowScale_mmul. rewrite mmul_1_l. auto.
+
destruct elimDown as [l3 M3] eqn:T3.
destruct (toREF M3 x) as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4. inversion H. rewrite <- H2, <- T4.
apply elimDown_eq in T3. rewrite <- T3.
rewrite !rowOps2mat_app. simpl. rewrite !mmul_assoc. f_equal. f_equal.
rewrite <- mrowScale_mmul. rewrite <- mrowSwap_mmul. rewrite mmul_1_l. auto.
Qed.
toREF M x = Some (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros.
- simpl in H. inversion H. simpl. apply mmul_1_l.
- unfold toREF in H; fold (@toREF (n)) in H. destruct getPivot as [i|] eqn: Hi; try easy.
replace (S n - S x) with (n - x) in * by lia.
destruct (i ??= #(n - x)) as [E|E].
+
destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4. inversion H. rewrite <- H2, <- T4.
apply elimDown_eq in T3. rewrite <- T3.
rewrite !rowOps2mat_app. simpl. rewrite !mmul_assoc. f_equal. f_equal.
rewrite <- mrowScale_mmul. rewrite mmul_1_l. auto.
+
destruct elimDown as [l3 M3] eqn:T3.
destruct (toREF M3 x) as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4. inversion H. rewrite <- H2, <- T4.
apply elimDown_eq in T3. rewrite <- T3.
rewrite !rowOps2mat_app. simpl. rewrite !mmul_assoc. f_equal. f_equal.
rewrite <- mrowScale_mmul. rewrite <- mrowSwap_mmul. rewrite mmul_1_l. auto.
Qed.
M 的前 S n - x 列左下角是0,且将 M 的后 x 行变换上三角得到 (l, M'),
则 M' 的所有列的左下角是 0
Lemma toREF_mLeftLowerZeros :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M x = Some (l, M') ->
x <= S n ->
mLeftLowerZeros M (S n - x) ->
mLeftLowerZeros M' (S n).
Proof.
induction x; intros.
- simpl in *. inv H. auto.
- unfold toREF in H; fold (@toREF n) in H.
replace (S n - S x) with (n - x) in * by lia.
destruct getPivot as [i|] eqn : Hi; try easy.
destruct (i ??= #(n - x)) as [E|E].
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
inv H. apply IHx in T4; auto; try lia; clear IHx.
replace x with (S n - (S (n - x))) in T3 at 4 by lia.
apply elimDown_mLeftLowerZeros in T3; try lia.
* replace (S (n - x)) with (S n - x) in T3 by lia; auto.
* unfold mrowScale; fin.
rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi. rewrite <- E in *. fin.
* hnf; intros. unfold mrowScale; fin. rewrite (H1 _ j); fin.
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
inv H. apply IHx in T4; auto; try lia; clear IHx.
replace x with (S n - (S (n - x))) in T3 at 6 by lia.
apply elimDown_mLeftLowerZeros in T3; try lia.
* replace (S (n - x)) with (S n - x) in T3 by lia; auto.
* unfold mrowScale; fin.
rewrite field_mulInvL; auto.
unfold mrowSwap; fin. apply getPivot_imply_nonzero in Hi. auto.
* hnf; intros. unfold mrowScale, mrowSwap; fin.
** rewrite (H1 _ j); fin. apply getPivot_min in Hi. lia.
** rewrite (H1 _ j); fin.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M x = Some (l, M') ->
x <= S n ->
mLeftLowerZeros M (S n - x) ->
mLeftLowerZeros M' (S n).
Proof.
induction x; intros.
- simpl in *. inv H. auto.
- unfold toREF in H; fold (@toREF n) in H.
replace (S n - S x) with (n - x) in * by lia.
destruct getPivot as [i|] eqn : Hi; try easy.
destruct (i ??= #(n - x)) as [E|E].
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
inv H. apply IHx in T4; auto; try lia; clear IHx.
replace x with (S n - (S (n - x))) in T3 at 4 by lia.
apply elimDown_mLeftLowerZeros in T3; try lia.
* replace (S (n - x)) with (S n - x) in T3 by lia; auto.
* unfold mrowScale; fin.
rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi. rewrite <- E in *. fin.
* hnf; intros. unfold mrowScale; fin. rewrite (H1 _ j); fin.
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
inv H. apply IHx in T4; auto; try lia; clear IHx.
replace x with (S n - (S (n - x))) in T3 at 6 by lia.
apply elimDown_mLeftLowerZeros in T3; try lia.
* replace (S (n - x)) with (S n - x) in T3 by lia; auto.
* unfold mrowScale; fin.
rewrite field_mulInvL; auto.
unfold mrowSwap; fin. apply getPivot_imply_nonzero in Hi. auto.
* hnf; intros. unfold mrowScale, mrowSwap; fin.
** rewrite (H1 _ j); fin. apply getPivot_min in Hi. lia.
** rewrite (H1 _ j); fin.
Qed.
化行阶梯矩阵得到了上三角矩阵
Lemma toREF_mUpperTrig : forall {n} (M M' : smat (S n)) (l : list RowOp),
toREF M (S n) = Some (l, M') -> mUpperTrig M'.
Proof.
intros. apply toREF_mLeftLowerZeros in H; auto.
hnf; intros. lia.
Qed.
toREF M (S n) = Some (l, M') -> mUpperTrig M'.
Proof.
intros. apply toREF_mLeftLowerZeros in H; auto.
hnf; intros. lia.
Qed.
M 的前 S n - x 个对角线元素是1,且将 M 的后 x 行变换上三角得到 (l, M'),
则 M' 的所有对角线都是1
Lemma toREF_mDiagonalOne :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M x = Some (l, M') ->
mDiagonalOne M (S n - x) ->
x <= S n ->
mDiagonalOne M' (S n).
Proof.
induction x; intros.
- simpl in *. inv H. auto.
-
unfold toREF in H; fold (@toREF n) in H.
destruct getPivot as [i|] eqn: Hi; try easy.
replace (S n - S x) with (n - x) in * by lia.
destruct (i ??= #(n - x)) as [E|E].
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4; clear IHx; try lia.
* inversion H; clear H. rewrite <- H4. auto.
* hnf; intros.
apply elimDown_keep_former_row with (i:=i0)(j:=i0) in T3; fin.
** rewrite T3. unfold mrowScale; fin.
*** rewrite <- E0. fin. rewrite field_mulInvL; auto.
rewrite <- E0 in *. fin.
apply getPivot_imply_nonzero in Hi; auto.
fin2nat. auto.
*** rewrite H0; auto. lia.
** unfold mrowScale; fin. rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi. rewrite <- E in *. fin.
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4; clear IHx; try lia.
* inversion H; clear H. rewrite <- H4. auto.
* hnf; intros.
apply elimDown_keep_former_row with (i:=i0)(j:=i0) in T3; fin.
** rewrite T3. unfold mrowScale, mrowSwap; fin.
*** rewrite <- E0. fin. rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi.
rewrite <- E0 in *. fin.
*** subst.
pose proof (getPivot_max _ _ _ _ Hi).
pose proof (getPivot_min _ _ _ _ Hi). lia.
*** assert (i0 < n - x). lia.
rewrite H0; auto.
** unfold mrowScale, mrowSwap; fin.
rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi. auto.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M x = Some (l, M') ->
mDiagonalOne M (S n - x) ->
x <= S n ->
mDiagonalOne M' (S n).
Proof.
induction x; intros.
- simpl in *. inv H. auto.
-
unfold toREF in H; fold (@toREF n) in H.
destruct getPivot as [i|] eqn: Hi; try easy.
replace (S n - S x) with (n - x) in * by lia.
destruct (i ??= #(n - x)) as [E|E].
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4; clear IHx; try lia.
* inversion H; clear H. rewrite <- H4. auto.
* hnf; intros.
apply elimDown_keep_former_row with (i:=i0)(j:=i0) in T3; fin.
** rewrite T3. unfold mrowScale; fin.
*** rewrite <- E0. fin. rewrite field_mulInvL; auto.
rewrite <- E0 in *. fin.
apply getPivot_imply_nonzero in Hi; auto.
fin2nat. auto.
*** rewrite H0; auto. lia.
** unfold mrowScale; fin. rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi. rewrite <- E in *. fin.
+ destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4; clear IHx; try lia.
* inversion H; clear H. rewrite <- H4. auto.
* hnf; intros.
apply elimDown_keep_former_row with (i:=i0)(j:=i0) in T3; fin.
** rewrite T3. unfold mrowScale, mrowSwap; fin.
*** rewrite <- E0. fin. rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi.
rewrite <- E0 in *. fin.
*** subst.
pose proof (getPivot_max _ _ _ _ Hi).
pose proof (getPivot_min _ _ _ _ Hi). lia.
*** assert (i0 < n - x). lia.
rewrite H0; auto.
** unfold mrowScale, mrowSwap; fin.
rewrite field_mulInvL; auto.
apply getPivot_imply_nonzero in Hi. auto.
Qed.
化行阶梯矩阵得到的矩阵的对角线都是 1
Lemma toREF_mDiagonalOnes : forall {n} (M M' : smat (S n)) (l : list RowOp),
toREF M (S n) = Some (l, M') -> mDiagonalOnes M'.
Proof.
intros. unfold mDiagonalOnes. apply toREF_mDiagonalOne in H; auto.
hnf; lia.
Qed.
toREF M (S n) = Some (l, M') -> mDiagonalOnes M'.
Proof.
intros. unfold mDiagonalOnes. apply toREF_mDiagonalOne in H; auto.
hnf; lia.
Qed.
对 M 行变换得到 (l, M'),则 l 都是有效的
Lemma toREF_rowOpValid :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
x <= S n -> toREF M x = Some (l, M') -> Forall roValid l.
Proof.
induction x; intros.
- simpl in H0. inversion H0. constructor.
- unfold toREF in H0; fold (@toREF (n)) in H0.
destruct getPivot as [i|] eqn: Hi; try easy.
replace (S n - S x) with (n - x) in * by lia.
destruct (i ??= #(n - x)) as [E|E].
+
destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy. inversion H0.
apply IHx in T4 as T4'.
apply elimDown_rowOpValid in T3.
apply Forall_app. split; auto.
apply Forall_app. split; auto.
repeat constructor. unfold roValid.
apply field_inv_neq0_iff.
apply getPivot_imply_nonzero in Hi. fin2nat. auto. fin. fin.
+
destruct elimDown as [l3 M3] eqn:T3.
destruct (toREF M3 x) as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4 as T4'. inversion H0.
apply elimDown_rowOpValid in T3.
apply Forall_app. split; auto.
apply Forall_app. split; auto.
repeat constructor. unfold roValid.
apply field_inv_neq0_iff. unfold mrowSwap. fin.
apply getPivot_imply_nonzero in Hi. auto. fin. fin.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
x <= S n -> toREF M x = Some (l, M') -> Forall roValid l.
Proof.
induction x; intros.
- simpl in H0. inversion H0. constructor.
- unfold toREF in H0; fold (@toREF (n)) in H0.
destruct getPivot as [i|] eqn: Hi; try easy.
replace (S n - S x) with (n - x) in * by lia.
destruct (i ??= #(n - x)) as [E|E].
+
destruct elimDown as [l3 M3] eqn:T3.
destruct toREF as [[l4 M4]|] eqn:T4; try easy. inversion H0.
apply IHx in T4 as T4'.
apply elimDown_rowOpValid in T3.
apply Forall_app. split; auto.
apply Forall_app. split; auto.
repeat constructor. unfold roValid.
apply field_inv_neq0_iff.
apply getPivot_imply_nonzero in Hi. fin2nat. auto. fin. fin.
+
destruct elimDown as [l3 M3] eqn:T3.
destruct (toREF M3 x) as [[l4 M4]|] eqn:T4; try easy.
apply IHx in T4 as T4'. inversion H0.
apply elimDown_rowOpValid in T3.
apply Forall_app. split; auto.
apply Forall_app. split; auto.
repeat constructor. unfold roValid.
apply field_inv_neq0_iff. unfold mrowSwap. fin.
apply getPivot_imply_nonzero in Hi. auto. fin. fin.
Qed.
对 M 行变换得到 (l, M'),则 l' * M' = M
Lemma toREF_eq_inv : forall {n} (M M' : smat (S n)) (l : list RowOp),
toREF M (S n) = Some (l, M') -> rowOps2matInv l * M' = M.
Proof.
intros. apply toREF_eq in H as H'. rewrite <- H'.
rewrite <- mmul_assoc. rewrite mmul_rowOps2matInv_rowOps2mat_eq1.
rewrite mmul_1_l; auto.
apply toREF_rowOpValid in H. auto. lia.
Qed.
toREF M (S n) = Some (l, M') -> rowOps2matInv l * M' = M.
Proof.
intros. apply toREF_eq in H as H'. rewrite <- H'.
rewrite <- mmul_assoc. rewrite mmul_rowOps2matInv_rowOps2mat_eq1.
rewrite mmul_1_l; auto.
apply toREF_rowOpValid in H. auto. lia.
Qed.
化行阶梯矩阵得到的矩阵是单位上三角矩阵
Lemma toREF_mUnitUpperTrig : forall {n} (M M' : smat (S n)) (l : list RowOp),
toREF M (S n) = Some (l, M') -> mUnitUpperTrig M'.
Proof.
intros. hnf. split.
apply toREF_mUpperTrig in H; auto.
apply toREF_mDiagonalOnes in H; auto.
Qed.
toREF M (S n) = Some (l, M') -> mUnitUpperTrig M'.
Proof.
intros. hnf. split.
apply toREF_mUpperTrig in H; auto.
apply toREF_mDiagonalOnes in H; auto.
Qed.
化行阶梯形满足乘法不变式,并且结果矩阵是规范的上三角矩阵
Theorem toREF_spec :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M (S n) = Some (l, M') ->
(rowOps2mat l * M = M') /\ mUnitUpperTrig M'.
Proof.
intros. split.
apply toREF_eq in H; auto.
apply toREF_mUnitUpperTrig in H; auto.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toREF M (S n) = Some (l, M') ->
(rowOps2mat l * M = M') /\ mUnitUpperTrig M'.
Proof.
intros. split.
apply toREF_eq in H; auto.
apply toREF_mUnitUpperTrig in H; auto.
Qed.
Fixpoint elimUp {n} (M : smat (S n)) (x : nat) (j : 'I_(S n))
: list RowOp * smat (S n) :=
match x with
| O => ([], M)
| S x' =>
let fx : 'I_(S n) := #x' in
let a : tA := (M.[fx].[j]) in
if Aeqdec a 0
then elimUp M x' j
else
let (op1, M1) := (ROadd fx j (-a)%A, mrowAdd fx j (-a)%A M) in
let (l2, M2) := elimUp M1 x' j in
((l2 ++ [op1])%list, M2)
end.
对 M 向上消元得到 (l, M'),则 l * M = M'
Lemma elimUp_eq :
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
elimUp M x j = (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros; simpl in *.
- inversion H. simpl. apply mmul_1_l.
-
destruct (Aeqdec (M #x j) 0) as [E|E].
+ apply IHx in H; auto.
+ destruct elimUp as [l2 M2] eqn:T2.
apply IHx in T2. inv H.
rewrite rowOps2mat_app. simpl.
rewrite !mmul_assoc. f_equal.
rewrite <- mrowAdd_mmul. rewrite mmul_1_l. auto.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
elimUp M x j = (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros; simpl in *.
- inversion H. simpl. apply mmul_1_l.
-
destruct (Aeqdec (M #x j) 0) as [E|E].
+ apply IHx in H; auto.
+ destruct elimUp as [l2 M2] eqn:T2.
apply IHx in T2. inv H.
rewrite rowOps2mat_app. simpl.
rewrite !mmul_assoc. f_equal.
rewrite <- mrowAdd_mmul. rewrite mmul_1_l. auto.
Qed.
对 M 向上消元得到 (l, M'),则 l 都是有效的
Lemma elimUp_rowOpValid :
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
x <= j ->
elimUp M x j = (l, M') -> Forall roValid l.
Proof.
induction x; intros; simpl in *.
- inversion H0. constructor.
-
destruct (Aeqdec (M #x j) 0) as [E|E].
+ apply IHx in H0; auto. fin.
+ destruct elimUp as [l2 M2] eqn:T2.
apply IHx in T2; fin. inv H0.
apply Forall_app. split; auto. repeat constructor. hnf. intros.
rewrite <- H0 in H.
rewrite fin2nat_nat2finS in H; fin.
pose proof (fin2nat_lt j). fin.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (j : 'I_(S n)) (l : list RowOp),
x <= j ->
elimUp M x j = (l, M') -> Forall roValid l.
Proof.
induction x; intros; simpl in *.
- inversion H0. constructor.
-
destruct (Aeqdec (M #x j) 0) as [E|E].
+ apply IHx in H0; auto. fin.
+ destruct elimUp as [l2 M2] eqn:T2.
apply IHx in T2; fin. inv H0.
apply Forall_app. split; auto. repeat constructor. hnf. intros.
rewrite <- H0 in H.
rewrite fin2nat_nat2finS in H; fin.
pose proof (fin2nat_lt j). fin.
Qed.
对 M 向上消元保持单位上三角矩阵
Lemma elimUp_mUnitUpperTrig :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (j : 'I_(S n)),
elimUp M x j = (l, M') ->
x <= j ->
mUnitUpperTrig M -> mUnitUpperTrig M'.
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct (Aeqdec (M #x j) 0) as [E|E].
+ apply IHx in H; auto; try lia.
+ destruct elimUp as [l2 M2] eqn: T2. inv H.
apply IHx in T2; auto; try lia.
apply mrowAdd_mUnitUpperTrig; auto. fin.
pose proof (fin2nat_lt j). lia.
Qed.
Lemma elimUp_keep_lower_rows :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimUp M x y = (l, M') ->
x <= y ->
(forall i j : 'I_(S n), x <= i -> M' i j = M i j).
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct (Aeqdec (M #x y) 0) as [E|E].
+ apply IHx with (i:=i)(j:=j) in H; auto; try lia.
+ destruct elimUp as [l2 M2] eqn: T2. inv H.
apply IHx with (i:=i)(j:=j) in T2; auto; try lia.
rewrite T2. unfold mrowAdd; fin.
pose proof (fin2nat_lt y). lia.
Qed.
Lemma elimUp_upper_rows_0 :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimUp M x y = (l, M') ->
mUnitUpperTrig M ->
x <= y ->
(forall i : 'I_(S n), i < x -> M' i y = 0).
Proof.
induction x; intros; try lia.
simpl in H. hnf in H0. destruct H0 as [H00 H01].
destruct (Aeqdec (M #x y) 0) as [E|E].
-
destruct (x ??= i) as [E1|E1].
+ apply elimUp_keep_lower_rows with (i:=i)(j:=y) in H; try lia.
rewrite H. subst. fin.
+ apply IHx with (i:=i) in H; auto; try lia. split; auto.
- destruct elimUp as [l2 M2] eqn: T2. inv H.
destruct (x ??= i) as [E1|E1].
+ rewrite E1 in *.
apply elimUp_keep_lower_rows with (i:=i)(j:=y) in T2; try lia. rewrite T2.
unfold mrowAdd; fin. rewrite H01; auto; try lia; fin.
+ apply IHx with (i:=i) in T2; auto; try lia.
apply mrowAdd_mUnitUpperTrig; auto. split; auto.
fin. pose proof (fin2nat_lt y). lia.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (j : 'I_(S n)),
elimUp M x j = (l, M') ->
x <= j ->
mUnitUpperTrig M -> mUnitUpperTrig M'.
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct (Aeqdec (M #x j) 0) as [E|E].
+ apply IHx in H; auto; try lia.
+ destruct elimUp as [l2 M2] eqn: T2. inv H.
apply IHx in T2; auto; try lia.
apply mrowAdd_mUnitUpperTrig; auto. fin.
pose proof (fin2nat_lt j). lia.
Qed.
Lemma elimUp_keep_lower_rows :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimUp M x y = (l, M') ->
x <= y ->
(forall i j : 'I_(S n), x <= i -> M' i j = M i j).
Proof.
induction x; intros.
- simpl in H. inv H. auto.
- simpl in H.
destruct (Aeqdec (M #x y) 0) as [E|E].
+ apply IHx with (i:=i)(j:=j) in H; auto; try lia.
+ destruct elimUp as [l2 M2] eqn: T2. inv H.
apply IHx with (i:=i)(j:=j) in T2; auto; try lia.
rewrite T2. unfold mrowAdd; fin.
pose proof (fin2nat_lt y). lia.
Qed.
Lemma elimUp_upper_rows_0 :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimUp M x y = (l, M') ->
mUnitUpperTrig M ->
x <= y ->
(forall i : 'I_(S n), i < x -> M' i y = 0).
Proof.
induction x; intros; try lia.
simpl in H. hnf in H0. destruct H0 as [H00 H01].
destruct (Aeqdec (M #x y) 0) as [E|E].
-
destruct (x ??= i) as [E1|E1].
+ apply elimUp_keep_lower_rows with (i:=i)(j:=y) in H; try lia.
rewrite H. subst. fin.
+ apply IHx with (i:=i) in H; auto; try lia. split; auto.
- destruct elimUp as [l2 M2] eqn: T2. inv H.
destruct (x ??= i) as [E1|E1].
+ rewrite E1 in *.
apply elimUp_keep_lower_rows with (i:=i)(j:=y) in T2; try lia. rewrite T2.
unfold mrowAdd; fin. rewrite H01; auto; try lia; fin.
+ apply IHx with (i:=i) in T2; auto; try lia.
apply mrowAdd_mUnitUpperTrig; auto. split; auto.
fin. pose proof (fin2nat_lt y). lia.
Qed.
若 M 的后 L 列的右上角都是 0,则上消元后,M' 的后 L 列的右上角都是 0
Lemma elimUp_mUpperRightZeros_aux :
forall (x L : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimUp M x y = (l, M') ->
x <= y ->
L < S n - y ->
mUnitUpperTrig M ->
mRightUpperZeros M L ->
mRightUpperZeros M' L.
Proof.
induction x; intros; simpl in H. inv H; auto.
simpl in H.
destruct (Aeqdec (M #x y) 0) as [E|E].
- hnf; intros.
apply IHx with (L:=L) in H; auto; try lia.
- destruct elimUp as [l2 M2] eqn: T2. inv H.
hnf; intros.
apply IHx with (L:=L) in T2; auto; try lia.
+ apply mrowAdd_mUnitUpperTrig; auto. fin.
+ hnf; intros. unfold mrowAdd; fin.
rewrite !(H3 _ j0); try lia. ring.
Qed.
forall (x L : nat) {n} (M M' : smat (S n)) (l : list RowOp) (y : 'I_(S n)),
elimUp M x y = (l, M') ->
x <= y ->
L < S n - y ->
mUnitUpperTrig M ->
mRightUpperZeros M L ->
mRightUpperZeros M' L.
Proof.
induction x; intros; simpl in H. inv H; auto.
simpl in H.
destruct (Aeqdec (M #x y) 0) as [E|E].
- hnf; intros.
apply IHx with (L:=L) in H; auto; try lia.
- destruct elimUp as [l2 M2] eqn: T2. inv H.
hnf; intros.
apply IHx with (L:=L) in T2; auto; try lia.
+ apply mrowAdd_mUnitUpperTrig; auto. fin.
+ hnf; intros. unfold mrowAdd; fin.
rewrite !(H3 _ j0); try lia. ring.
Qed.
若 M 的后 (S n - S y) 列的右上角都是 0,则上消元后,S n - y 列的右上角都是 0
Lemma elimUp_mUpperRightZeros:
forall {n} (M M' : smat (S n)) (l : list RowOp) (y : nat),
elimUp M y #y = (l, M') ->
y < S n ->
mUnitUpperTrig M ->
mRightUpperZeros M (S n - S y) ->
mRightUpperZeros M' (S n - y).
Proof.
intros. hnf; intros.
replace (S n - (S n - y)) with y in H3 by lia.
destruct (j ??= y) as [E|E].
- subst. apply elimUp_upper_rows_0 with (i:=i) in H; auto; fin.
- apply elimUp_mUpperRightZeros_aux with (L:=S n - S y) in H; auto; fin.
rewrite H; auto. lia.
Qed.
forall {n} (M M' : smat (S n)) (l : list RowOp) (y : nat),
elimUp M y #y = (l, M') ->
y < S n ->
mUnitUpperTrig M ->
mRightUpperZeros M (S n - S y) ->
mRightUpperZeros M' (S n - y).
Proof.
intros. hnf; intros.
replace (S n - (S n - y)) with y in H3 by lia.
destruct (j ??= y) as [E|E].
- subst. apply elimUp_upper_rows_0 with (i:=i) in H; auto; fin.
- apply elimUp_mUpperRightZeros_aux with (L:=S n - S y) in H; auto; fin.
rewrite H; auto. lia.
Qed.
Fixpoint toRREF {n} (M : smat (S n)) (x : nat) : list RowOp * smat (S n) :=
match x with
| O => ([], M)
| S x' =>
let fx : 'I_(S n) := #x' in
let (l1, M1) := elimUp M x' fx in
let (l2, M2) := toRREF M1 x' in
((l2 ++ l1)%list, M2)
end.
对 M 最简行变换得到 (l, M'),则 l * M = M'
Lemma toRREF_eq : forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros; simpl in *.
- inversion H. simpl. apply mmul_1_l.
- destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2.
apply IHx in T2. inv H.
apply elimUp_eq in T1. rewrite <- T1.
rewrite rowOps2mat_app. apply mmul_assoc.
Qed.
Lemma toRREF_mUnitUpperTrig :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') ->
x <= S n ->
mUnitUpperTrig M ->
mUnitUpperTrig M'.
Proof.
induction x; intros; simpl in H. inv H; auto.
destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2. inv H.
apply IHx in T2; auto; try lia.
apply elimUp_mUnitUpperTrig in T1; auto. fin.
Qed.
toRREF M x = (l, M') -> rowOps2mat l * M = M'.
Proof.
induction x; intros; simpl in *.
- inversion H. simpl. apply mmul_1_l.
- destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2.
apply IHx in T2. inv H.
apply elimUp_eq in T1. rewrite <- T1.
rewrite rowOps2mat_app. apply mmul_assoc.
Qed.
Lemma toRREF_mUnitUpperTrig :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') ->
x <= S n ->
mUnitUpperTrig M ->
mUnitUpperTrig M'.
Proof.
induction x; intros; simpl in H. inv H; auto.
destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2. inv H.
apply IHx in T2; auto; try lia.
apply elimUp_mUnitUpperTrig in T1; auto. fin.
Qed.
若 M 的 后 S n - x 列的右上角都是0,则对 M 最简行变换得到的 M' 的右上角都是0
Lemma toRREF_mRightUpperZeros :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') ->
x <= S n ->
mUnitUpperTrig M ->
mRightUpperZeros M (S n - x) ->
mRightUpperZeros M' (S n).
Proof.
induction x; intros; simpl in H. inv H; auto.
destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2. inv H.
apply IHx in T2; auto; try lia.
- apply elimUp_mUnitUpperTrig in T1; auto. fin.
- apply elimUp_mUpperRightZeros in T1; auto.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') ->
x <= S n ->
mUnitUpperTrig M ->
mRightUpperZeros M (S n - x) ->
mRightUpperZeros M' (S n).
Proof.
induction x; intros; simpl in H. inv H; auto.
destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2. inv H.
apply IHx in T2; auto; try lia.
- apply elimUp_mUnitUpperTrig in T1; auto. fin.
- apply elimUp_mUpperRightZeros in T1; auto.
Qed.
对 M 向下消元得到 (l, M'),则 l 都是有效的
Lemma toRREF_rowOpValid :
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') -> x <= S n -> Forall roValid l.
Proof.
induction x; intros; simpl in H. inv H; auto.
destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2. inv H.
apply IHx in T2; auto; try lia.
apply elimUp_rowOpValid in T1 as T1'; fin.
apply Forall_app. split; auto.
Qed.
forall (x : nat) {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M x = (l, M') -> x <= S n -> Forall roValid l.
Proof.
induction x; intros; simpl in H. inv H; auto.
destruct elimUp as [l1 M1] eqn : T1.
destruct toRREF as [l2 M2] eqn : T2. inv H.
apply IHx in T2; auto; try lia.
apply elimUp_rowOpValid in T1 as T1'; fin.
apply Forall_app. split; auto.
Qed.
对 M 最简行变换得到 (l, M'),则 l' * M' = M
Lemma toRREF_eq_inv : forall {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M (S n) = (l, M') -> rowOps2matInv l * M' = M.
Proof.
intros. apply toRREF_eq in H as H'. rewrite <- H'.
rewrite <- mmul_assoc. rewrite mmul_rowOps2matInv_rowOps2mat_eq1.
rewrite mmul_1_l; auto.
apply toRREF_rowOpValid in H; fin.
Qed.
toRREF M (S n) = (l, M') -> rowOps2matInv l * M' = M.
Proof.
intros. apply toRREF_eq in H as H'. rewrite <- H'.
rewrite <- mmul_assoc. rewrite mmul_rowOps2matInv_rowOps2mat_eq1.
rewrite mmul_1_l; auto.
apply toRREF_rowOpValid in H; fin.
Qed.
对 M 最简行变换得到 (l, M'),则 M' 是单位阵
Lemma toRREF_mat1 : forall {n} (M M' : smat (S n)) (l : list RowOp),
toRREF M (S n) = (l, M') ->
mUnitUpperTrig M -> M' = mat1.
Proof.
intros. apply meq_iff_mnth; intros.
destruct (j ??< i).
-
rewrite mat1_mLeftLowerZeros; auto; fin.
apply toRREF_mUnitUpperTrig in H; auto.
hnf in H. destruct H. rewrite H; auto; fin.
- destruct (j ??= i) as [E|E].
+
apply toRREF_mUnitUpperTrig in H; auto. fin2nat.
rewrite mat1_mDiagonalOne; fin.
hnf in H. destruct H. rewrite H1; auto; fin.
+
assert (i < j) by lia.
rewrite mat1_mRightUpperZeros; auto; fin.
apply toRREF_mRightUpperZeros in H; auto; fin.
* rewrite H; auto; try lia.
* hnf; intros. pose proof (fin2nat_lt j0). lia.
Qed.
End GaussElim.
toRREF M (S n) = (l, M') ->
mUnitUpperTrig M -> M' = mat1.
Proof.
intros. apply meq_iff_mnth; intros.
destruct (j ??< i).
-
rewrite mat1_mLeftLowerZeros; auto; fin.
apply toRREF_mUnitUpperTrig in H; auto.
hnf in H. destruct H. rewrite H; auto; fin.
- destruct (j ??= i) as [E|E].
+
apply toRREF_mUnitUpperTrig in H; auto. fin2nat.
rewrite mat1_mDiagonalOne; fin.
hnf in H. destruct H. rewrite H1; auto; fin.
+
assert (i < j) by lia.
rewrite mat1_mRightUpperZeros; auto; fin.
apply toRREF_mRightUpperZeros in H; auto; fin.
* rewrite H; auto; try lia.
* hnf; intros. pose proof (fin2nat_lt j0). lia.
Qed.
End GaussElim.