FinMatrix.CoqExt.RExt.RExtOpp
Hint Rewrite
Ropp_0
Rminus_0_r
Ropp_involutive
Rplus_opp_r
Rplus_opp_l
Rminus_diag
Ropp_mult_distr_r_reverse
Ropp_mult_distr_l_reverse
Rdiv_opp_l
Rdiv_opp_r
: R.
(- r)² = r²
Lemma Rsqr_opp : forall r : R, (- r)² = r².
Proof. intros. rewrite <- Rsqr_neg. auto. Qed.
Hint Rewrite Rsqr_opp : R.
Proof. intros. rewrite <- Rsqr_neg. auto. Qed.
Hint Rewrite Rsqr_opp : R.
- ((- r) * r) = r²
Lemma Ropp_Rmul_Ropp_l : forall (r : R), - ((- r) * r) = r².
Proof. intros. cbv. ring. Qed.
Hint Rewrite Ropp_Rmul_Ropp_l : R.
Proof. intros. cbv. ring. Qed.
Hint Rewrite Ropp_Rmul_Ropp_l : R.
- (r * (- r)) = r²
Lemma Ropp_Rmul_Ropp_r : forall (r : R), - (r * (- r)) = r².
Proof. intros. cbv. ring. Qed.
Hint Rewrite Ropp_Rmul_Ropp_r : R.
Proof. intros. cbv. ring. Qed.
Hint Rewrite Ropp_Rmul_Ropp_r : R.
(- 1) * r = - r
Lemma Rmult_neg1_l : forall r : R, (- 1) * r = - r.
Proof. intros. lra. Qed.
Hint Rewrite Rmult_neg1_l : R.
Proof. intros. lra. Qed.
Hint Rewrite Rmult_neg1_l : R.
r * (- 1) = - r
Lemma Rmult_neg1_r : forall r : R, r * (- 1) = - r.
Proof. intros. lra. Qed.
Hint Rewrite Rmult_neg1_r : R.
Proof. intros. lra. Qed.
Hint Rewrite Rmult_neg1_r : R.