FinMatrix.CoqExt.RExt.RExtMult


Require Export RExtBase.

Basic automation


Hint Rewrite
  Rplus_0_l
  Rplus_0_r
  Rmult_0_l
  Rmult_0_r
  Rmult_1_l
  Rmult_1_r
  Rdiv_1_l
  Rdiv_1_r
  : R.

Hint Resolve
  Rmult_lt_0_compat
  : R.

Additional properties

a * b = a * c -> b <> c -> a = 0
Lemma Rmult_eq_reg_l_rev : forall a b c : R, a * b = a * c -> b <> c -> a = 0.
Proof. ra. Qed.

a * c = b * c -> a <> b -> c = 0
Lemma Rmult_eq_reg_r_rev : forall c a b : R, a * c = b * c -> a <> b -> c = 0.
Proof. ra. Qed.

b <> 0 -> a * b = b -> a = 1
Lemma Rmult_eq_r_reg : forall a b : R, b <> 0 -> a * b = b -> a = 1.
Proof.
  intros. replace b with (1 * b)%R in H0 at 2 by lra.
  apply Rmult_eq_reg_r in H0; auto.
Qed.

a <> 0 -> a * b = a -> b = 1
Lemma Rmult_eq_l_reg : forall a b : R, a <> 0 -> a * b = a -> b = 1.
Proof.
  intros. replace a with (a * 1)%R in H0 at 2 by lra.
  apply Rmult_eq_reg_l in H0; auto.
Qed.

c <> 0 -> a * c = b -> a = b / c
Lemma Rmult_imply_Rdiv : forall a b c : R, c <> 0 -> a * c = b -> a = b / c.
Proof. intros. rewrite <- H0. field. auto. Qed.