FinMatrix.CoqExt.RExt.RExtAbs
Hint Rewrite
Rabs_R0
Rabs_Ropp
Rabs_Rabsolu
: R.
Hint Resolve
Rabs_pos
sqrt_pos
Rabs_right
Rabs_pos_eq
Rabs_left
Rabs_left1
Rabs_no_R0
: R.
0 <= r -> r = |r|
Lemma Rabs_right_sym : forall r : R, 0 <= r -> r = |r|.
Proof. intros; symmetry; ra. Qed.
Hint Resolve Rabs_right_sym : R.
Proof. intros; symmetry; ra. Qed.
Hint Resolve Rabs_right_sym : R.
r < 0 -> - r = |r|
Lemma Rabs_left_sym : forall r : R, r < 0 -> - r = |r|.
Proof. intros; symmetry; ra. Qed.
Hint Resolve Rabs_left_sym : R.
Proof. intros; symmetry; ra. Qed.
Hint Resolve Rabs_left_sym : R.
r <= 0 -> - r = |r|
Lemma Rabs_left1_sym : forall r : R, r <= 0 -> - r = |r|.
Proof. intros; symmetry; ra. Qed.
Hint Resolve Rabs_left1_sym : R.
Proof. intros; symmetry; ra. Qed.
Hint Resolve Rabs_left1_sym : R.
0 <= r -> | -r | = r
r < 0 -> | -r| = -r
0 <= r -> | r | = r
| r | = r -> 0 <= r
Lemma Rabs_pos_if : forall r, | r | = r -> 0 <= r.
Proof.
intros.
bdestruct (r <=? 0); auto; ra.
apply Rabs_left1 in H0.
assert (r = 0); lra.
Qed.
Hint Resolve Rabs_pos_if : R.
Proof.
intros.
bdestruct (r <=? 0); auto; ra.
apply Rabs_left1 in H0.
assert (r = 0); lra.
Qed.
Hint Resolve Rabs_pos_if : R.
r <= 0 -> | r | = - r
Lemma Rabs_neg_imply : forall r, r <= 0 -> | r | = - r.
Proof. ra. Qed.
Hint Resolve Rabs_neg_imply : R.
Proof. ra. Qed.
Hint Resolve Rabs_neg_imply : R.
| r | = - r -> r <= 0
Lemma Rabs_neg_if : forall r, | r | = - r -> r <= 0.
Proof.
intros. bdestruct (r <=? 0); ra.
bdestruct (r =? 0); ra.
assert (r > 0); ra.
rewrite Rabs_right in H; ra.
Qed.
Hint Resolve Rabs_neg_if : R.
Proof.
intros. bdestruct (r <=? 0); ra.
bdestruct (r =? 0); ra.
assert (r > 0); ra.
rewrite Rabs_right in H; ra.
Qed.
Hint Resolve Rabs_neg_if : R.
|a| <= b -> - b <= a <= b
Lemma Rabs_le_rev : forall a b : R, |a| <= b -> - b <= a <= b.
Proof.
intros. bdestruct (a <? 0).
- assert (|a| = -a); ra.
- assert (|a| = a); ra.
apply Rabs_pos_imply; ra.
Qed.
Lemma Rdiv_abs_gt0 : forall r, r > 0 -> r / | r | = 1.
Proof. intros. rewrite Rabs_right; ra. Qed.
Hint Resolve Rdiv_abs_gt0 : R.
Lemma Rdiv_abs_lt0 : forall r, r < 0 -> r / | r | = -1.
Proof. intros. rewrite Rabs_left; ra. Qed.
Hint Resolve Rdiv_abs_lt0 : R.
Proof.
intros. bdestruct (a <? 0).
- assert (|a| = -a); ra.
- assert (|a| = a); ra.
apply Rabs_pos_imply; ra.
Qed.
Lemma Rdiv_abs_gt0 : forall r, r > 0 -> r / | r | = 1.
Proof. intros. rewrite Rabs_right; ra. Qed.
Hint Resolve Rdiv_abs_gt0 : R.
Lemma Rdiv_abs_lt0 : forall r, r < 0 -> r / | r | = -1.
Proof. intros. rewrite Rabs_left; ra. Qed.
Hint Resolve Rdiv_abs_lt0 : R.