FinMatrix.CoqExt.ElementType
Module Type ElementType.
Parameter tA : Type.
Parameter Azero : tA.
Notation "0" := Azero : A_scope.
Axiom AeqDec : Dec (@eq tA).
#[export] Existing Instance AeqDec.
End ElementType.
Parameter tA : Type.
Parameter Azero : tA.
Notation "0" := Azero : A_scope.
Axiom AeqDec : Dec (@eq tA).
#[export] Existing Instance AeqDec.
End ElementType.
Module ElementTypeFun (I O : ElementType) <: ElementType.
Definition tA : Type := I.tA -> O.tA.
Definition Azero : tA := fun _ => O.Azero.
Hint Unfold tA Azero : tA.
Lemma AeqDec : Dec (@eq tA).
Proof. constructor. intros a b. unfold tA in *.
Admitted.
End ElementTypeFun.
Module Type OrderedElementType <: ElementType.
Include ElementType.
Parameter Alt Ale : tA -> tA -> Prop.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Axiom Order : Order Alt Ale.
End OrderedElementType.
Include ElementType.
Parameter Alt Ale : tA -> tA -> Prop.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Axiom Order : Order Alt Ale.
End OrderedElementType.
Module Type MonoidElementType <: ElementType.
Include ElementType.
Open Scope A_scope.
Parameter Aadd : tA -> tA -> tA.
Infix "+" := Aadd : A_scope.
Axiom Aadd_AMonoid : AMonoid Aadd Azero.
#[export] Existing Instance Aadd_AMonoid.
End MonoidElementType.
Include ElementType.
Open Scope A_scope.
Parameter Aadd : tA -> tA -> tA.
Infix "+" := Aadd : A_scope.
Axiom Aadd_AMonoid : AMonoid Aadd Azero.
#[export] Existing Instance Aadd_AMonoid.
End MonoidElementType.
Module MonoidElementTypeFun (I O : MonoidElementType) <: MonoidElementType.
Include (ElementTypeFun I O).
Open Scope A_scope.
Definition Aadd (f g : tA) : tA := fun x : I.tA => O.Aadd (f x) (g x).
Hint Unfold Aadd : tA.
Infix "+" := Aadd : A_scope.
Lemma Aadd_Associative : Associative Aadd.
Proof.
intros. constructor; intros; autounfold with tA.
extensionality x. apply O.Aadd_AMonoid.
Qed.
Lemma Aadd_Commutative : Commutative Aadd.
Proof.
intros. constructor; intros; autounfold with tA.
extensionality x. apply O.Aadd_AMonoid.
Qed.
Lemma Aadd_IdentityLeft : IdentityLeft Aadd Azero.
Proof.
intros. constructor; intros; autounfold with tA.
extensionality x. apply O.Aadd_AMonoid.
Qed.
Lemma Aadd_IdentityRight : IdentityRight Aadd Azero.
Proof.
intros. constructor; intros; autounfold with tA.
extensionality x. apply O.Aadd_AMonoid.
Qed.
#[export] Instance Aadd_AMonoid : AMonoid Aadd Azero.
Proof.
intros. constructor; intros; autounfold with tA.
intros. constructor; intros; autounfold with tA.
constructor. apply Aadd_Associative.
apply Aadd_IdentityLeft. apply Aadd_IdentityRight.
constructor. apply Aadd_Associative.
apply Aadd_Commutative.
constructor. constructor. apply Aadd_Associative.
apply Aadd_Commutative.
Qed.
End MonoidElementTypeFun.
Module Type RingElementType <: MonoidElementType.
Include MonoidElementType.
Open Scope A_scope.
Parameter Aone : tA.
Parameter Amul : tA -> tA -> tA.
Parameter Aopp : tA -> tA.
Notation Asub := (fun x y => Aadd x (Aopp y)).
Infix "*" := Amul : A_scope.
Notation "1" := Aone : A_scope.
Notation "a ²" := (a * a) : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Infix "-" := Asub : A_scope.
Include MonoidElementType.
Open Scope A_scope.
Parameter Aone : tA.
Parameter Amul : tA -> tA -> tA.
Parameter Aopp : tA -> tA.
Notation Asub := (fun x y => Aadd x (Aopp y)).
Infix "*" := Amul : A_scope.
Notation "1" := Aone : A_scope.
Notation "a ²" := (a * a) : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Infix "-" := Asub : A_scope.
SRing structure can be derived from the context
Ring structure can be derived from the context
Module RingElementTypeFun (I O : RingElementType) <: RingElementType.
Add Ring Ring_thy_inst_o : (make_ring_theory O.ARing).
Include (MonoidElementTypeFun I O).
Definition Aone : tA := fun _ => O.Aone.
Definition Aopp (f : tA) : tA := fun x : I.tA => O.Aopp (f x).
Definition Amul (f g : tA) : tA := fun x : I.tA => O.Amul (f x) (g x).
Notation Asub := (fun x y => Aadd x (Aopp y)).
#[export] Instance SRing : SRing Aadd Azero Amul Aone.
Proof.
repeat constructor; autounfold with tA; intros;
apply functional_extensionality; intros; cbv; ring.
Qed.
#[export] Instance ARing : ARing Aadd Azero Aopp Amul Aone.
Proof.
repeat constructor; autounfold with tA; intros;
apply functional_extensionality; intros; cbv; ring.
Qed.
Add Ring Ring_inst : (make_ring_theory ARing).
End RingElementTypeFun.
Element with abelian-ring structure and ordered relation
Type of Element with ordered abelian-ring structure
Module Type OrderedRingElementType <: RingElementType <: OrderedElementType.
Include RingElementType.
Parameter Alt Ale : tA -> tA -> Prop.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Axiom Order : Order Alt Ale.
Axiom OrderedARing : OrderedARing Aadd Azero Aopp Amul Aone Alt Ale.
#[export] Existing Instance OrderedARing.
Notation "| a |" := (Aabs a) : A_scope.
End OrderedRingElementType.
Include RingElementType.
Parameter Alt Ale : tA -> tA -> Prop.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Axiom Order : Order Alt Ale.
Axiom OrderedARing : OrderedARing Aadd Azero Aopp Amul Aone Alt Ale.
#[export] Existing Instance OrderedARing.
Notation "| a |" := (Aabs a) : A_scope.
End OrderedRingElementType.
Module Type FieldElementType <: RingElementType.
Include RingElementType.
Open Scope A_scope.
Parameter Ainv : tA -> tA.
Notation Adiv := (fun x y => Amul x (Ainv y)).
Notation "/ a" := (Ainv a) : A_scope.
Infix "/" := Adiv : A_scope.
1 <> 0.
Axiom Aone_neq_Azero : Aone <> Azero.
Axiom Field : Field Aadd Azero Aopp Amul Aone Ainv.
#[export] Existing Instance Field.
End FieldElementType.
Axiom Field : Field Aadd Azero Aopp Amul Aone Ainv.
#[export] Existing Instance Field.
End FieldElementType.
Module Type OrderedFieldElementType <: FieldElementType <: OrderedRingElementType.
Include FieldElementType.
Parameter Alt Ale : tA -> tA -> Prop.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Axiom Order : Order Alt Ale.
Axiom OrderedARing : OrderedARing Aadd Azero Aopp Amul Aone Alt Ale.
#[export] Existing Instance OrderedARing.
Axiom OrderedAField : OrderedField Aadd Azero Aopp Amul Aone Ainv Alt Ale.
#[export] Existing Instance OrderedAField.
Notation "| a |" := (Aabs a) : A_scope.
End OrderedFieldElementType.
Include FieldElementType.
Parameter Alt Ale : tA -> tA -> Prop.
Infix "<" := Alt : A_scope.
Infix "<=" := Ale : A_scope.
Axiom Order : Order Alt Ale.
Axiom OrderedARing : OrderedARing Aadd Azero Aopp Amul Aone Alt Ale.
#[export] Existing Instance OrderedARing.
Axiom OrderedAField : OrderedField Aadd Azero Aopp Amul Aone Ainv Alt Ale.
#[export] Existing Instance OrderedAField.
Notation "| a |" := (Aabs a) : A_scope.
End OrderedFieldElementType.
Element with field structure and ordered relation and normed
Type of Element with normed ordered field structure
Module Type NormedOrderedFieldElementType <: OrderedFieldElementType.
Include OrderedFieldElementType.
Import Reals.
Parameter a2r : tA -> R.
Axiom A2R : A2R Aadd Azero Aopp Amul Aone Ainv Alt Ale a2r.
#[export] Existing Instance A2R.
End NormedOrderedFieldElementType.
Include OrderedFieldElementType.
Import Reals.
Parameter a2r : tA -> R.
Axiom A2R : A2R Aadd Azero Aopp Amul Aone Ainv Alt Ale a2r.
#[export] Existing Instance A2R.
End NormedOrderedFieldElementType.