FinMatrix.CoqExt.BoolExt


Require Export Bool.
Require Export Setoid.

More properties for bool

andb split

Ltac tac_andb_true_iff :=
  intros; split; intro H;[
  repeat rewrite andb_true_iff in *;
  repeat match goal with | H : _ /\ _ |- _ => destruct H; auto 10 end|
  repeat rewrite andb_true_iff;
  repeat match goal with | H : _ /\ _ |- _ => destruct H; auto 10 end].

Lemma andb_true_iff3 : forall b1 b2 b3 : bool,
  b1 && b2 && b3 = true <->
  b1 = true /\ b2 = true /\ b3 = true.
Proof.
  tac_andb_true_iff.
Qed.

Lemma andb_true_iff4 : forall b1 b2 b3 b4 : bool,
  b1 && b2 && b3 && b4 = true <->
  b1 = true /\ b2 = true /\ b3 = true /\ b4 = true.
Proof.
  tac_andb_true_iff.
Qed.

Lemma andb_true_iff5 : forall b1 b2 b3 b4 b5 : bool,
  b1 && b2 && b3 && b4 && b5 = true <->
  b1 = true /\ b2 = true /\ b3 = true /\ b4 = true /\ b5 = true.
Proof.
  tac_andb_true_iff.
Qed.

Lemma andb_true_iff6 : forall b1 b2 b3 b4 b5 b6 : bool,
  b1 && b2 && b3 && b4 && b5 && b6 = true <->
  b1 = true /\ b2 = true /\ b3 = true /\ b4 = true /\ b5 = true /\
  b6 = true.
Proof.
  tac_andb_true_iff.
Qed.

Lemma andb_true_iff7 : forall b1 b2 b3 b4 b5 b6 b7 : bool,
  b1 && b2 && b3 && b4 && b5 && b6 && b7 = true <->
  b1 = true /\ b2 = true /\ b3 = true /\ b4 = true /\ b5 = true /\
  b6 = true /\ b7 = true.
Proof.
  tac_andb_true_iff.
Qed.

andb equal inversion

Lemma andb_eq_inv : forall a1 a2 b1 b2 : bool,
  a1 = b1 -> a2 = b2 -> a1 && a2 = b1 && b2.
Proof.
  destruct a1,a2,b1,b2; intros; auto.
Qed.

Ltac solve_bool :=
  let H := fresh "H" in
  match goal with
  
  | |- ?b = false -> ?b <> true => intros H; rewrite H; auto
  
  | |- ?b <> true -> ?b = false => intros; apply not_true_is_false; auto
  end.

bool to Prop