FinMatrix.CoqExt.ZExt
Hint Resolve eq_equivalence : Z.
operations are well-defined. Eg: Proper (eq ==> eq ==> eq) add
Hint Resolve
Z.add_wd
Z.opp_wd
Z.sub_wd
Z.mul_wd
: Z.
Z.add_wd
Z.opp_wd
Z.sub_wd
Z.mul_wd
: Z.
Decidable
#[export] Instance Z_eq_Dec : Dec (@eq Z).
Proof. constructor. apply Z.eq_dec. Defined.
#[export] Instance Z_le_Dec : Dec Z.le.
Proof. constructor. intros. destruct (Z_le_gt_dec a b); auto. Defined.
#[export] Instance Z_lt_Dec : Dec Z.lt.
Proof. constructor. intros. destruct (Z_lt_le_dec a b); auto. right. lia. Defined.
Associative
#[export] Instance Zadd_Assoc : Associative Z.add.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_Assoc : Associative Z.mul.
Proof. constructor; intros; ring. Qed.
Hint Resolve Zadd_Assoc Zmul_Assoc : Z.
Commutative
#[export] Instance Zadd_Comm : Commutative Z.add.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_Comm : Commutative Z.mul.
Proof. constructor; intros; ring. Qed.
Hint Resolve Zadd_Comm Zmul_Comm : Z.
Identity Left/Right
#[export] Instance Zadd_IdL : IdentityLeft Z.add 0.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zadd_IdR : IdentityRight Z.add 0.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_IdL : IdentityLeft Z.mul 1.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_IdR : IdentityRight Z.mul 1.
Proof. constructor; intros; ring. Qed.
Hint Resolve
Zadd_IdL Zadd_IdR
Zmul_IdL Zmul_IdR : Z.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zadd_IdR : IdentityRight Z.add 0.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_IdL : IdentityLeft Z.mul 1.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_IdR : IdentityRight Z.mul 1.
Proof. constructor; intros; ring. Qed.
Hint Resolve
Zadd_IdL Zadd_IdR
Zmul_IdL Zmul_IdR : Z.
Inverse Left/Right
#[export] Instance Zadd_InvL : InverseLeft Z.add 0 Z.opp.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zadd_InvR : InverseRight Z.add 0 Z.opp.
Proof. constructor; intros; ring. Qed.
Hint Resolve Zadd_InvL Zadd_InvR : Z.
Distributive
#[export] Instance Zmul_add_DistrL : DistrLeft Z.add Z.mul.
Proof. constructor; intros; ring. Qed.
#[export] Instance Zmul_add_DistrR : DistrRight Z.add Z.mul.
Proof. constructor; intros; ring. Qed.
Hint Resolve Zmul_add_DistrL Zmul_add_DistrR : Z.
Semigroup
#[export] Instance Zadd_SGroup : SGroup Z.add.
Proof. constructor; auto with Z. Qed.
#[export] Instance Zmul_SGroup : SGroup Z.mul.
Proof. constructor; auto with Z. Qed.
Hint Resolve Zadd_SGroup Zmul_SGroup : Z.
Abelian semigroup
#[export] Instance Zadd_ASGroup : ASGroup Z.add.
Proof. constructor; auto with Z. Qed.
#[export] Instance Zmul_ASGroup : ASGroup Z.mul.
Proof. constructor; auto with Z. Qed.
Hint Resolve
Zadd_ASGroup
Zmul_ASGroup
: Z.
Monoid
#[export] Instance Zadd_Monoid : Monoid Z.add 0.
Proof. constructor; auto with Z. Qed.
#[export] Instance Zmul_Monoid : Monoid Z.mul 1.
Proof. constructor; auto with Z. Qed.
Hint Resolve Zadd_Monoid Zmul_Monoid : Z.
Abelian monoid
#[export] Instance Zadd_AMonoid : AMonoid Z.add 0.
Proof. constructor; auto with Z. Qed.
#[export] Instance Zmul_AMonoid : AMonoid Z.mul 1.
Proof. constructor; auto with Z. Qed.
Hint Resolve Zadd_AMonoid Zmul_AMonoid : Z.
Group
#[export] Instance Zadd_Group : Group Z.add 0 Z.opp.
Proof. constructor; auto with Z. Qed.
Hint Resolve Zadd_Group : Z.
AGroup
#[export] Instance Zadd_AGroup : AGroup Z.add 0 Z.opp.
Proof. constructor; auto with Z. Qed.
Hint Resolve Zadd_AGroup : Z.
Ring
#[export] Instance Z_Ring : Ring Z.add 0 Z.opp Z.mul 1.
Proof. constructor; auto with Z. Qed.
Hint Resolve Z_Ring : Z.
ARing
#[export] Instance Z_ARing : ARing Z.add 0 Z.opp Z.mul 1.
Proof. constructor; auto with Z. Qed.
Hint Resolve Z_ARing : Z.
Order
#[export] Instance Z_Order : Order Z.lt Z.le.
Proof.
constructor; intros; try lia; auto with Z.
apply Z_dec'.
Qed.
Hint Resolve Z_Order : Z.
#[export] Instance Z_OrderedARing :
OrderedARing Z.add 0 Z.opp Z.mul 1 Z.lt Z.le.
Proof.
constructor; auto with Z.
intros; lia.
intros. apply Zmult_lt_compat_r; auto.
Qed.
Hint Resolve Z_OrderedARing : Z.
Module ElementTypeZ <: ElementType.
Definition A : Type := Z.
Definition Azero : A := 0.
Hint Unfold A Azero : A.
Lemma AeqDec : Dec (@eq A).
Proof. apply Z_eq_Dec. Defined.
End ElementTypeZ.
Module MonoidElementTypeZ <: MonoidElementType.
Include ElementTypeZ.
Definition Aadd := Zplus.
Hint Unfold Aadd : A.
Infix "+" := Aadd : A_scope.
#[export] Instance Aadd_AMonoid : AMonoid Aadd Azero.
Proof. intros. repeat constructor; intros; autounfold with A; ring. Qed.
End MonoidElementTypeZ.
Module RingElementTypeZ <: RingElementType.
Include MonoidElementTypeZ.
Definition Aone : A := 1.
Definition Aopp := Z.opp.
Definition Amul := Zmult.
Hint Unfold Aone Aopp Amul : A.
Notation Asub := (fun x y => Aadd x (Aopp y)).
Infix "*" := Amul : A_scope.
Notation "- a" := (Aopp a) : A_scope.
Infix "-" := Asub : A_scope.
#[export] Instance ARing : ARing Aadd Azero Aopp Amul Aone.
Proof. repeat constructor; autounfold with A; intros; ring. Qed.
End RingElementTypeZ.
Module OrderedElementTypeZ <: OrderedElementType.
Include ElementTypeZ.
Definition Alt := Z.lt.
Definition Ale := Z.le.
Hint Unfold Ale Alt : A.
#[export] Instance Order : Order Alt Ale.
Proof. apply Z_Order. Qed.
End OrderedElementTypeZ.
Module OrderedRingElementTypeZ <: OrderedRingElementType.
Include RingElementTypeZ.
Definition Ale := Z.le.
Definition Alt := Z.lt.
Hint Unfold Ale Alt : A.
#[export] Instance Order : Order Alt Ale.
Proof. apply OrderedElementTypeZ.Order. Qed.
#[export] Instance OrderedARing
: OrderedARing Aadd Azero Aopp Amul Aone Alt Ale.
Proof.
constructor. apply ARing. apply Order.
- intros; autounfold with A in *. lia.
- intros; autounfold with A in *. apply Zmult_lt_compat_r; auto.
Qed.
End OrderedRingElementTypeZ.
Reflection of (=) and (=?)
Lemma Zeqb_true_iff : forall x y, x =? y = true <-> x = y.
Proof.
apply Z.eqb_eq.
Qed.
Lemma Zeqb_false_iff : forall x y, x =? y = false <-> x <> y.
Proof.
apply Z.eqb_neq.
Qed.
Proof.
apply Z.eqb_eq.
Qed.
Lemma Zeqb_false_iff : forall x y, x =? y = false <-> x <> y.
Proof.
apply Z.eqb_neq.
Qed.
#[export] Hint Resolve Z.eqb_spec : bdestruct.
Boolean equality of Zadd satisfy right cancelling rule
Lemma Zadd_eqb_cancel_r : forall (z1 z2 a : Z),
(z1 + a =? z2 + a)%Z = (z1 =? z2)%Z.
Proof.
intros.
remember (z1 =? z2)%Z as b1 eqn : H1.
remember (z1 + a =? z2 + a)%Z as b2 eqn : H2.
destruct b1,b2; auto.
- apply eq_sym in H1,H2. apply Z.eqb_eq in H1. apply Z.eqb_neq in H2.
subst. auto.
- apply eq_sym in H1,H2. apply Z.eqb_neq in H1. apply Z.eqb_eq in H2.
apply Z.add_cancel_r in H2. apply H1 in H2. easy.
Qed.
(z1 + a =? z2 + a)%Z = (z1 =? z2)%Z.
Proof.
intros.
remember (z1 =? z2)%Z as b1 eqn : H1.
remember (z1 + a =? z2 + a)%Z as b2 eqn : H2.
destruct b1,b2; auto.
- apply eq_sym in H1,H2. apply Z.eqb_eq in H1. apply Z.eqb_neq in H2.
subst. auto.
- apply eq_sym in H1,H2. apply Z.eqb_neq in H1. apply Z.eqb_eq in H2.
apply Z.add_cancel_r in H2. apply H1 in H2. easy.
Qed.