FinMatrix.CoqExt.RAnalysisExt
全体
一个集合是无界的
集合有界的等价定义
Definition boundR' (X : setR) : Prop :=
exists (A B : R), (A < B) /\ (forall x, X x -> (A <= x <= B)).
Theorem boundR_eq_boundR' : forall X, boundR X <-> boundR' X.
Admitted.
exists (A B : R), (A < B) /\ (forall x, X x -> (A <= x <= B)).
Theorem boundR_eq_boundR' : forall X, boundR X <-> boundR' X.
Admitted.
常见函数的定义域
Axiom domain_of_inv : domain_of Rinv = fun x => x <> 0%R.
Axiom domain_of_sqrt : domain_of (fun u => sqrt u) = fun u => u >= 0.
Axiom domain_of_ln : domain_of ln = fun u => u > 0.
Axiom domain_of_tan :
domain_of tan = fun u => ~(exists (k : Z), u = (2 * (IZR k) * PI + PI/2))%R.
Axiom domain_of_sqrt : domain_of (fun u => sqrt u) = fun u => u >= 0.
Axiom domain_of_ln : domain_of ln = fun u => u > 0.
Axiom domain_of_tan :
domain_of tan = fun u => ~(exists (k : Z), u = (2 * (IZR k) * PI + PI/2))%R.
Definition fcompR (f g : R -> R) : R -> R := fun x => f (g x).
Infix "\o" := fcompR : Rfun_scope.
Fact fcompR_rw : forall u v : R -> R, (fun x => u (v x)) = (u \o v)%F.
Proof. auto. Qed.
Infix "\o" := fcompR : Rfun_scope.
Fact fcompR_rw : forall u v : R -> R, (fun x => u (v x)) = (u \o v)%F.
Proof. auto. Qed.
两个函数可以复合的条件是:内函数的值域与外函数的定义域的交集非空
Definition fcompR_valid (u v : R -> R) : Prop :=
let Du := domain_of u in
let Rv := range_of v in
exists x, (Du x /\ Rv x).
Section test.
Goal let f := fun x => (x * x + / x)%R in
let g := fun x => (x + / x)%R in
fcompR_valid f g ->
(f \o g)%F = fun x =>
let x2 := (x * x)%R in
(x2 + / x2 + (x / (x2 + 1)) + 2)%R.
Proof.
intros. unfold f, g, fcompR, fcompR_valid in *. apply feq_iff; intros.
field.
Abort.
End test.
let Du := domain_of u in
let Rv := range_of v in
exists x, (Du x /\ Rv x).
Section test.
Goal let f := fun x => (x * x + / x)%R in
let g := fun x => (x + / x)%R in
fcompR_valid f g ->
(f \o g)%F = fun x =>
let x2 := (x * x)%R in
(x2 + / x2 + (x / (x2 + 1)) + 2)%R.
Proof.
intros. unfold f, g, fcompR, fcompR_valid in *. apply feq_iff; intros.
field.
Abort.
End test.
Definition boundf (f : R -> R) (X : setR) : Prop :=
exists M, M > 0 /\ (forall x, X x -> (Rabs (f x) <= M)).
exists M, M > 0 /\ (forall x, X x -> (Rabs (f x) <= M)).
f在X内不是有界的
Definition unboundf (f : R -> R) (X : setR) : Prop :=
forall M, M > 0 -> (exists x, X x /\ (Rabs (f x) > M)).
forall M, M > 0 -> (exists x, X x /\ (Rabs (f x) > M)).
有界性的等价刻画
Definition boundf' (f : R -> R) (X : setR) : Prop :=
exists (A B : R), (A < B) /\ (forall x, X x -> (A <= f x <= B)).
Theorem boundf_eq_boundf' : forall f X, boundf f X <-> boundf' f X.
Admitted.
exists (A B : R), (A < B) /\ (forall x, X x -> (A <= f x <= B)).
Theorem boundf_eq_boundf' : forall f X, boundf f X <-> boundf' f X.
Admitted.
Definition lower_bound_of (f : R -> R) (l : R) : Prop :=
l > 0 /\ (forall x, (domain_of f x -> f x >= l)).
l > 0 /\ (forall x, (domain_of f x -> f x >= l)).
u是f在定义域内的上界
Definition upper_bound_of (f : R -> R) (u : R) : Prop :=
u > 0 /\ (forall x, (domain_of f x -> f x <= u)).
u > 0 /\ (forall x, (domain_of f x -> f x <= u)).
u是f在定义域内的界
Definition bound_of (f : R -> R) (u : R) : Prop :=
u > 0 /\ (forall x, (domain_of f x -> Rabs (f x) <= u)).
u > 0 /\ (forall x, (domain_of f x -> Rabs (f x) <= u)).
以下函数在其定义域内是有界的(整体有界)
Fact boundf_sin : boundf sin allR. Admitted.
Fact bound_sin : bound_of sin 1. Admitted.
Fact boundf_cos : boundf cos allR. Admitted.
Fact bound_cos : bound_of cos 1. Admitted.
Fact bound_sin : bound_of sin 1. Admitted.
Fact boundf_cos : boundf cos allR. Admitted.
Fact bound_cos : bound_of cos 1. Admitted.
Definition oddf (f : R -> R) : Prop := forall x, f (-x) = - (f x).
Definition evenf (f : R -> R) : Prop := forall x, f (-x) = f x.
Fact oddf_fidR : evenf fidR. Admitted.
Fact oddf_pow3 : evenf (fun x => x ^ 3). Admitted.
Fact oddf_sin : evenf sin. Admitted.
Fact oddf_tan : evenf tan. Admitted.
Fact evenf_fcnstR : forall (C : R), evenf (fcnstR C). Admitted.
Fact evenf_pow2 : evenf (fun x => x ^ 2). Admitted.
Fact evenf_pow2n : forall (n : nat), evenf (fun x => x ^ (2 * n)). Admitted.
Fact evenf_cos : evenf cos. Admitted.
Lemma faddR_odd_odd : forall u v, oddf u -> oddf v -> oddf (u + v)%F.
Admitted.
Lemma fsubR_odd_odd : forall u v, oddf u -> oddf v -> oddf (u - v)%F.
Admitted.
Lemma fmulR_odd_odd : forall u v, oddf u -> oddf v -> evenf (u * v)%F.
Admitted.
Lemma fdivR_odd_odd : forall u v, oddf u -> oddf v -> evenf (u / v)%F.
Admitted.
Lemma faddR_even_even : forall u v, evenf u -> evenf v -> evenf (u + v)%F.
Admitted.
Lemma fsubR_even_even : forall u v, evenf u -> evenf v -> evenf (u - v)%F.
Admitted.
Lemma fmulR_even_even : forall u v, evenf u -> evenf v -> evenf (u * v)%F.
Admitted.
Lemma fdivR_even_even : forall u v, evenf u -> evenf v -> evenf (u / v)%F.
Admitted.
Lemma fcompR_any_even : forall u v, evenf v -> evenf (u \o v).
Admitted.
Lemma fcompR_odd_odd : forall u v, oddf u -> oddf v -> oddf (u \o v).
Admitted.
Lemma fcompR_even_odd : forall u v, evenf u -> oddf v -> evenf (u \o v).
Admitted.
函数 f 是周期函数
Definition periodicf (f : R -> R) : Prop :=
exists (l : R), l > 0 /\ (forall x, (domain_of f) x -> f (x + l)%R = f x).
exists (l : R), l > 0 /\ (forall x, (domain_of f) x -> f (x + l)%R = f x).
函数 f 是以 T 为周期
Definition periodic_of (f : R -> R) (T : R) : Prop :=
T > 0 /\ (forall x, (domain_of f) x -> f (x + T)%R = f x).
T > 0 /\ (forall x, (domain_of f) x -> f (x + T)%R = f x).
常见的周期函数
Fact periodicf_sin : periodicf sin. Admitted.
Fact periodic_of_sin : periodic_of sin (2*PI). Admitted.
Fact periodicf_cos : periodicf cos. Admitted.
Fact periodic_of_cos : periodic_of cos (2*PI). Admitted.
Fact periodicf_tan : periodicf tan. Admitted.
Fact periodic_of_tan : periodic_of tan (2*PI). Admitted.
Fact periodic_of_sin : periodic_of sin (2*PI). Admitted.
Fact periodicf_cos : periodicf cos. Admitted.
Fact periodic_of_cos : periodic_of cos (2*PI). Admitted.
Fact periodicf_tan : periodicf tan. Admitted.
Fact periodic_of_tan : periodic_of tan (2*PI). Admitted.
Axiom domain_of_fexpR : forall (a : R), (a > 0 /\ a <> 1) -> domain_of (fexpR a) = allR.
Fact range_of_fexpR (a : R) : range_of (fexpR a) = fun x => x > 0. Admitted.
Axiom domain_of_flogR : forall (a : R),
(a > 0 /\ a <> 1) -> domain_of (flogR a) = (fun x => x > 0).
Fact range_of_flogR (a : R) : range_of (flogR a) = allR. Admitted.