FinMatrix.CoqExt.QExt
Require Export PositiveExt ZExt.
Require Export QArith Qround.
Require Export Hierarchy.
Open Scope Q.
well-defined
Hint Resolve
Qplus_comp Qopp_comp Qminus_comp Qmult_comp Qinv_comp Qdiv_comp
: wd.
#[export] Instance Q_eq_Dec : Dec (@eq Q).
Proof.
constructor. intros. destruct a as [p1 q1], b as [p2 q2].
destruct (Aeqdec p1 p2), (Aeqdec q1 q2); subst; auto.
all: right; intro; inversion H; easy.
Defined.
#[export] Instance Q_le_Dec : Dec Qle.
Proof.
constructor. intros. destruct (Qlt_le_dec b a); auto.
right. intro. apply Qle_not_lt in H. easy.
Defined.
#[export] Instance Q_lt_Dec : Dec Qlt.
Proof.
constructor. intros. destruct (Qlt_le_dec a b); auto.
right. intro. apply Qle_not_lt in q. easy.
Defined.
Lemma Q_le_refl : forall n : Q, n <= n.
Proof. apply Qle_refl. Qed.
Section test.
Goal forall a b : Q, {a = b} + {a <> b}.
Proof. intros. apply Aeqdec. Abort.
End test.
Qplus_comp Qopp_comp Qminus_comp Qmult_comp Qinv_comp Qdiv_comp
: wd.
#[export] Instance Q_eq_Dec : Dec (@eq Q).
Proof.
constructor. intros. destruct a as [p1 q1], b as [p2 q2].
destruct (Aeqdec p1 p2), (Aeqdec q1 q2); subst; auto.
all: right; intro; inversion H; easy.
Defined.
#[export] Instance Q_le_Dec : Dec Qle.
Proof.
constructor. intros. destruct (Qlt_le_dec b a); auto.
right. intro. apply Qle_not_lt in H. easy.
Defined.
#[export] Instance Q_lt_Dec : Dec Qlt.
Proof.
constructor. intros. destruct (Qlt_le_dec a b); auto.
right. intro. apply Qle_not_lt in q. easy.
Defined.
Lemma Q_le_refl : forall n : Q, n <= n.
Proof. apply Qle_refl. Qed.
Section test.
Goal forall a b : Q, {a = b} + {a <> b}.
Proof. intros. apply Aeqdec. Abort.
End test.
nat to Q
Q to Z
Properties for Qeqb and Qeq
Reflection of (==) and (=?)
Lemma Qeqb_true_iff_equiv : forall x y, x =? y = true <-> x == y.
Proof.
apply Qeq_bool_iff.
Qed.
Lemma Qeqb_false_iff_equiv : forall x y, x =? y = false <-> ~ x == y.
Proof.
intros; split; intros.
- intro. apply Qeqb_true_iff_equiv in H0. rewrite H in H0. easy.
- destruct (Qeqb x y) eqn:E1; auto. apply Qeqb_true_iff_equiv in E1. easy.
Qed.
Proof.
apply Qeq_bool_iff.
Qed.
Lemma Qeqb_false_iff_equiv : forall x y, x =? y = false <-> ~ x == y.
Proof.
intros; split; intros.
- intro. apply Qeqb_true_iff_equiv in H0. rewrite H in H0. easy.
- destruct (Qeqb x y) eqn:E1; auto. apply Qeqb_true_iff_equiv in E1. easy.
Qed.
(==) is equivalence relation